
Hardened∗OS exploitation techniques

Sebastian Krahmer

krahmer@cs.uni-potsdam.de

Abstract: To overcome the common ’find and fix’ technique on todays operating sys-
tems, more and more people install special hardening patches or complete RBAC sys-
tems. One goal of such systems is to stop intruders from taking control over the whole
system and to make exploitation of particular application bugs hard, if not impossible.
This paper explores the possibilities intruders have nevertheless.

Contents

1 Introduction 2

2 Exploiting, the common way 2

3 User-scoped Trojan horses 2

4 If root is not root 4

5 A grsecurity example 4

6 Exploits for grsecurity 5

6.1 Active exploits for grsecurity . 6

6.2 Passive exploits for grsecurity . 7

7 Summary 7

∗I wanted to write ’Trusted OS’ until I realized that there is a strong definition for this which is not met by
the systems I looked at.

1 Introduction

In this paper I write down some ideas I had during analyzation of various ’hardening
patches’ for the Linux Kernel. Most of these systems add very little additional security
such as LIDS [4]. On the other hand, there are some patches which offer complete ACL
and/or RBAC systems, trusted path execution and other nice things to make life for intrud-
ers as hard as possible. Two of these systems are SELinux and grsecurity. I will focus on
grsecurity and the weaknesses I have found during my research, but most things apply to
other hardening patches as well.

2 Exploiting, the common way

Observing the privilege escalation exploits for UNIX systems over many years, experience
shows that they can be divided into two classes:

• passive exploits
Passive exploits require no additional actions by the user which the attacker tries to
compromise. Passive exploits directly drop you in a shell with the elevated privi-
leges. An example for this is the traceroute [6] buffer overflow exploit which drops
the attacker into a root shell. No action by root is required for the attack to succeed,
except to forget to install the proper update.

• active exploits
Active exploiting requires any kind of action by the user being attacked. This ranges
from clicking to an evil link in an email to invoking certain programs which contain
/tmp race conditions but are not setuid or to Trojan files he is executing.

This said, and looking back for some years, we see that local passive exploits caused much
more trouble in past compared to local active exploits. Obviously they are much easier to
launch and the possibility to succeed is higher because the user-factor is erased. However
imagine a bug where it would be possible for an attacker to replace the /bin/su binary.
As a result the attacker could steal the passwords of the system, namely the root password.

3 User-scoped Trojan horses

Unfortunally in view of the attacker, the /bin/su binary cannot be replaced on most
systems because users usually do not have the permissions to do so. In case the user-
account was broken into and is used to su to the root account, the attacker has an additional
option: He can create a pty wrapper for the su program or setting aliases to su which
actually execute Trojan horses. An example session is shown here, utilizing the loga
screen-capturing program:

method example affects

shell aliasing alias su=id; su all command-line tools as
shown in pty sniff example

shell hashing hash -p /usr/bin/id su; su same as shell aliasing
shell functions su(){ id; }; su same as shell aliasing

pre-loading LD PRELOAD=‘pwd‘/evil.so ssh all non-setuid
command-line tools

Figure 1: Some methods to place user-scoped Trojans to a system.

stealth@linux:˜> ls -la proxy
-rwxr-xr-x 1 stealth users 23017 2003-12-03 09:37 proxy
stealth@linux:˜> alias /bin/su=‘pwd‘/proxy
stealth@linux:˜> /bin/su
Password:
linux:/home/stealth # id
uid=0(root) gid=0(root) groups=0(root)
linux:/home/stealth # exit
exit
stealth@linux:˜> ./proxy decrypt /tmp/mcX192YZ5002224
Password: secret
linux:/home/stealth # iidd
uid=0(root) gid=0(root) groups=0(root)
linux:/home/stealth # eexxiitt
exit
stealth@linux:˜>

The attacker sets an alias to /bin/suwhich indeed executes a Trojan horse which records
the session along with the password encrypted to /tmp/mcX192YZ5002224. The loga
program is part of the MSS [7] suite.
Other nice targets for user-scoped Trojans are ssh, telnet or passwd. Figure 1 shows how
attackers could place Trojans to a system that only affect a certain user.

The LIDS [4] protection for example can be disabled with the shell-function trick. Usu-
ally the /etc/rc.d/halt script holds the CAP SYS ADMIN capability to be able to
unmount the filesystems during shutdown. However by exporting apropriate shell func-
tions, the script is executing code of the attacker instead of internal shell commands.
Trojan horses can be thought as a special subset of active exploits. Weak configuration or
operating systems without proper user separation suffer very much on Trojan horses. On
such systems (imagine, write permissions to /lib or /root) a Trojan horse would be an
active exploit for the attacker to escalate the privileges. The action required to succeed is
the invocation by the attacked user.
As we will see later these attacks are very practical on RBAC and ACL systems once the
attacker compromised the root account but is still restricted by ACLs.

4 If root is not root

Adding an additional hardening patch to the Kernel also adds a new problem. The userspace
programs and daemons have been written for a completely different environment. They
expect that a UID of 0 means unrestricted access. With ACL systems however crontab
for example could be invoked two times with UID 0 but with different permissions. Bugs
which have not been fixed because the code could only be triggered by root becomes dan-
gerous now.1 A complete code review of the daemons is again necessary, this time under
the view of ACL-systems.
Certain daemons need to be rewritten completely if they are too complex to restrict them
with a view ACLs or one label. The sshd daemon for example can be abused to read out
arbitrary ASCII files by placing appropriate Banner options to the configuration file. If
you allow sshd to read hidden files from /etc/ssh/ such as grsecurity does, everyone
could abuse the Banner option to read out these hidden files. It looks as if the impact is
very limited, but on ACL systems the security is based on the access restrictions and the
given example leads to a complete compromise of the ACL system eventually.

5 A grsecurity example

The grsecurity patch for the Linux kernel offers a lot of measurements to make exploitation
of active and passive vulnerabilities harder or to prevent them at all. Among a lot of other
protections this includes

• PaX
By removing execute permissions of pages belonging to a process’ .data segment
and the process’ stack, PaX makes exploitation of buffer overflows much harder if
not impossible.

• randomized mmap()
By randomizing the base address of the libraries mapped to the process’ address
space and by randomizing even the base address of the executable mapped to mem-
ory its almost impossible to get programs vulnerable to buffer overflows to execute
code that drops the attacker into a shell or something similar.

• ACLs
By setting appropriate restrictions to system paths such as removing write permis-
sions from /etc, /lib, /bin and so on, attackers have no chance to place
Trojan horses there as long as the protection is enabled.

• fine grained privileges
Grsecurity allows to grant certain binaries special capabilities such as the capability
to bind to a privileged port. This way, the program does not longer need the setuid-
root bit and therefore a potential hole is closed.

1such bugs exist indeed in crontab, which gets a own label on SELinux

The first two items directly impact the behavior of passive overflow exploits. Given that
the information where the libraries are mapped to do not leak to the attacker, he has no
way to know where his evil input is located at 2 and to execute it at all. His input is data,
and as a general rule here, data cannot be ’executed’ as long as it is located outside the
.text segment which is read-only.

The third item ’ACL’ affects the active exploits. Once an attacker got root, somehow, he
wont be able to place Trojan horses to the system because the important places are all
write-protected. Note, the active exploit grsecurity protects you against, is an exploit that
escalates the privileges from a normal root account to an account with special privileges
to bypass ACL checks (admin role) or an account from which grsecurity can be disabled.

To summarize, an attacker has two choices of ’hacking’:

• least privilege
Once a user-account was compromised, do not try to get root or to disable grsecurity.
Just install Trojan horses in a user-local scope to catch SSH passwords for example
by installing special LD PRELOADable libraries or by installing the loga program
and setting certain aliases. There’s not much an Hardened OS can do about this. The
users homedir needs to be writable and executable in most cases and this suffices for
this kind of attack.

• highest privilege possible
Once a user-account was compromised, try to get root and try to disable grsecurity
or try to reach a admin role.

The first case is not to underestimate, but this paper concentrates on disabling the Hardened
OS protection measurements, so we only look at the second case. In most cases it will not
be enough to execute an passive root-exploit since it may drop you into a root-shell if you
figure out how to exploit buffer overflows in PaX but you still do not have full permissions.
So a two-level exploit is needed

• user to root elevation

• root to admin role 3 elevation

6 Exploits for grsecurity

While user-to-root elevation gets much harder on systems like grsecurity, they do not differ
much from active or passive exploits for ’normal’ operating systems. Attackers still need
to look for holes in suid programs and daemons etc. However the way of exploitation

2which he needs to know to get it executed
3Or any other level which is needed to disable grsecurity

becomes different because, for example, code on the stack cannot be executed or symlinks
are not followed. Once a normal root exploit succeeded, its likely that a second exploit
is needed to disable grsecurity.4 How such a second exploit could look like is explained
now.

6.1 Active exploits for grsecurity

Lets now consider two active attacks which allows attackers to steal the password which
is needed to disable grsecurity. Much as with any kind of software, a Hardened OS may
contain bugs and of course needs to be configured correctly.
The configuration of grsecurity 1.99 contained a flaw in the default config which allowed
attackers to trick root into executing Trojan horses or to sniff the gradm password. Usu-
ally you won’t be able to place any Trojan horses for root, as the complete $PATH and
/root is write protected. However, attackers who already gained root permissions but
are still restricted by ACLs may kill the sshd daemon and replace it by a own daemon
which logs plaintext traffic to a file under attackers control or which allows of setting a
new $PATH variable. This has been fixed in newer versions of grsecurity by making the
ssh host-keys not readable once ACL’s are enabled. This prevents attackers from restarting
a patched SSH daemon and still prompting the correct host-key to the legitimate admin.
However, remember that sshd can be abused to read out the ssh host-keys with the Banner
option which again opens the same hole. This should show that it can be very hard to have
no holes within the ACL configuration.

Another active vulnerability is shown below. grsecurity 2.0-rc3 does not remove the
CAP SYS ADMIN capability by default, allowing attackers to play tricks with the mount
command:

[root@lalawesi root]# cd /tmp/
[root@lalawesi tmp]# gradm2 -E
[root@lalawesi tmp]# dmesg|tail -3
eth0: no IPv6 routers present
grsec: From 192.168.0.2: Loaded grsecurity 2.0
[root@lalawesi tmp]# mkdir sbin
[root@lalawesi tmp]# cd sbin
[root@lalawesi sbin]# cat>gradm2.c
int main() { printf("Hello from trojan.\n"); return 0;}
ˆC
[root@lalawesi sbin]# cc gradm2.c -o gradm2
[root@lalawesi sbin]# mount -n --bind /tmp/sbin/ /sbin/
[root@lalawesi sbin]# ls -la /sbin/
total 24
drwxr-xr-x 2 root root 4096 Dec 15 17:03 .

4As long as the attacker hasnt hit the jackpot with a kernel bug or alike.

drwxr-xr-x 24 root root 4096 Dec 15 17:00 ..
-rwxr-xr-x 1 root root 11371 Dec 15 17:03 gradm2
-rw-r--r-- 1 root root 56 Dec 15 17:03 gradm2.c
[root@lalawesi sbin]# gradm2 -D
Hello from trojan.
[root@lalawesi sbin]#

The attacker re-binds a directory tree under his control into a write-protected area. Thus
he effectively replaces the gradm utility and can capture the admin role password even
without getting the admin a clue about it. It is however not possible for an attacker to
re-bind his own libraries to /lib and steal certain capabilities from binaries since the
rebound location is not write-protected in the eyes of grsecurity and it will therefore deny
the mapping.

6.2 Passive exploits for grsecurity

I am not aware of passive exploits against grsecurity except a modified version of the brk()
exploit.[5]. There is little a hardening patch can do about bugs in software it has to trust.
However there are some ideas written down in [3] how the kernel can be protected from
such attacks.
Beside bugs inside the kernel which could lead to a full compromise, a lot of other aspects
have to be viewed. My research concentrates on the following issues:

• The possibility to leak capabilities from higher privileged programs to the attacker
[8]

• The possibility to bypass the gr authentication

• The possibility to load/execute arbitrary code with elevated capabilities by playing
with the dynamic linker and/or shell-scripts

• The possibility to bypass the ACL checks on the filesystem

7 Summary

Todays computer systems offer no special protection against skilled attackers. Most soft-
ware suffers from buffer overflow vulnerabilities which allows remote attackers to gain
complete control over the system if properly exploited. To protect against such attacks,
special hardening patches need to be installed. The quality of these patches ranges from a
null-effect to stable and quite secure RBAC systems. However even on high-quality hard-
ening systems the attacker still has some options to get a feet into the door and where the
hardening patch cannot do much about it. Especially weak default configurations allow
attackers to circumvent various protection measurements. Additionally it is questionable

whether attackers need to elevate their privilegs to the highest privilege possible in future.
They may just install user-scoped Trojan horses to gather important information.

References

[1] grsecurity: http://www.grsecurity.net

[2] PaX: http://pax.grsecurity.net/

[3] PaX-future: http://pax.grsecurity.net/docs/pax-future.txt

[4] LIDS: http://www.lids.org

[5] brk() bug: http://isec.pl/papers/linux kernel do brk.pdf

[6] traceroute exploit: http://stealth.openwall.net/exploits/traceroot.c

[7] pty-sniffer: http://stealth.openwall.net/local/mss-0.33.tgz

[8] LIDS-hack: http://stealth.openwall.net/lids-hack.tgz

