
����������	
�	���
���	
�	
�
����

���
���������
���
���������
�����

����	
���
�������
 ������!������	

Jedidiah R. Crandall†, S. Felix Wu†, and
Frederic T. Chong‡

†University of California, Davis
‡University of California, Santa Barbara

"���	

� Describe Minos and its efficacy as a
honeypot technology for automated response

� Analyze attacks captured by Minos in order to
estimate the limits of worm polymorphism

#������

� Vulnerability Landscape
� Minos
� Epsilon-Gamma-Pi Model
� Exploits Caught by Minos
� Future Work

���
������!�����	
$%&

� Minos as a honeypot technology
� No false positives after 12 months of operation
� Has caught all 9 of the actual control data exploits

thrown at it without any prior knowledge about the
exploit or vulnerability

� Can catch control data exploits for unknown
vulnerabilities in any part of the system: security
products, CPL==0 exploits, passive exploits, etc.

���
������!�����	
$'&

� Epsilon-Gamma-Pi model
� Epsilon () = Exploit Vector
� Gamma () = Bogus Control Data
� Pi () = Payload

� Analysis in the paper
� NOP sleds are not needed in most Windows

exploits
� Quantification of how much polymorphism is

possible in and (left to future work)

 ������!�����
(���	����

� Laws of Vulnerabilities (Gerhard Eschelbeck
of Qualys at Blackhat 2004)
� Half-life of critical vulnerabilities is 21 days
� Half of the most prevalent are replaced by new

vulnerabilities every year
� Lifespan of some vulnerabilities and worms is

unlimited
� 80% of worms and automated exploits occur in

the first two half-lives

 ������!�����
(���	����
$'&

� Vulnerabilities in security products
� 2004: 60 critical flaws in security products, almost double

the 31 in 2003, 2005 up to May: 23, up 50% over 2004
(Sarah Lacy at BusinessWeek, 17 June 2005)
� Now outnumber critical Microsoft vulnerabilities

� Witty worm: ISS products, 2 days from vulnerability
disclosure to the worm outbreak

� “Remote Windows Kernel Exploitation” by Barnaby Jack at
eEye describes exploitation of a remote CPL==0 buffer
overflow in Symantec Personal Firewall

 ������!�����
(���	����
$)&

� Remote vulnerabilities in CPL==0
� eEye paper from the last slide
� 14 June 2005: Remote heap buffer overflow in

Microsoft Windows SMB implementation
� Much processing of network data occurs in

Windows kernel space: 2/3 of LSASS exploit
vector, TDIs, RPC, Mailslots, Named Pipes, etc…,
even IIS 6.0 HTTP processing

� Windows (Feb 2005) and Linux (Nov 2004) both
had remote SMBFS buffer overflows (but require
victim to visit attacker’s SMB share)

 ������!�����
(���	����
$*&

� Passively exploited vulnerabilities
� SMBFS flaws in Windows and Linux from the last

slide
� Web browsers with buffer overflows, etc.
� P2P networks

 ������!�����
(���	����
$+&

� 0day vulnerabilities
� Of 13 vulnerabilities we studied, none were

discovered by the software vendor
� If 3rd party researchers can discover 0day

vulnerabilities, so can attackers
� May 2005: Zero-day exploits for unknown

vulnerabilities in Mozilla Firefox

Automated honeypot
technologies must be able to
analyze exploits for unknown
vulnerabilities in places
heretofore not considered.

���	

� The Minos architecture was introduced in [Crandall,
Chong. MICRO 2004]

� Bochs emulations of Minos serve as excellent
honeypots
� Linux
� Windows XP/Whistler (not as secure without kernel

modifications, but good enough)
� Attacks in this paper were either on 1 on-campus

honeypot in the summer of 2004 or 3 off-campus
honeypots between Dec 2004 and Feb 2005

� Some (such as CRII, Slammer, Blaster, and Sasser)
occur daily and, at times, hourly

�,��
�	
�������
����-

� Any data which is loaded into the program counter
on control flow transfer, or any data used to
calculate such data

� Executable code is not control data
� Minos catches control data attacks (buffer overflows,

format strings, double free()s, etc.)
� Control data attacks constitute the majority of remote

intrusions
� Minos has some limitations described in MICRO2004
� Minos was not designed to catch directory traversal, default

passwords, high-level control flow hijacking like the Santy
worm, or the attacks described in [Chen et. al., USENIX
2005].

.��
���	
����	

� Tag bit for every data word
� Biba’s low-water-mark policy
� 8/16-bit loads/stores and

immediates are low integrity
� Changes to Linux kernel

detailed in MICRO2004,
analysis is done with gdb

� No changes to Windows at all,
network card port I/O is
assumed low integrity, analysis
done with Bochs debugger

�,�
��	����/"����/0�
����
$%&

� Main motivation for this model was to be able to
discuss polymorphism more clearly and precisely

� Attacks are split into three distinct phases (, , and
) because for each phase the polymorphic

techniques are different

�,�
��	����/"����/0�
����
$'&

� Epsilon, Gamma, and Pi are mappings to capture
the differences between data as it passes over the
network and data as it is processed in the physical
machine
� i.e. for Code Red II the row space of is “25 75 63 62 64

33 25 75 37 38 30 31” and the range is “d3 cb 01 78”, both
representations of 0x7801cbd3

� WORM vs. WORM [Castaneda et al. WORM2004]
assumed the row spaces and ranges of , , and were
disjoint sets of bytes and thus parts of the “black worm”
may be left behind in the “white worm”

�,�
��	����/"����/0�
����
$)&

"��������	
 ��
����	�����1����

“Where two ideas form a true logical antithesis,
each complementary to the other, then
fundamentally each is implied in the other.”

--Carl von Clausewitz, On War, 1832

������
������	
����,�
!�
���	

22 TCPNOP sledBuff. Over.Linuxssh

21 TCPunlink() macro*Dbl. Free()Linuxwu-ftpd

445 TCPRegister SpringHeap B.O.WindowsASN.1

445 TCPRegister Spring*Buff. Over.WindowsLSASS
(Sasser)

135 TCPRegister SpringBuff. Over.WindowsDCOM
(Blaster)

80 TCPRegister Spring*Buff. Over.IIS 4.0-5.0Code Red II

1434 UDPRegister Spring*Buff. Over.SQL 2000Slammer

1433 TCPRegister Spring*Buff. Over.SQL 2000SQL Hello

PortFirst HopTypeVulnName

Since DIMVA camera-ready deadline: Unidentified on 135 TCP (RPCSS?)

*confirmed that NOP sled is not necessary

#!	��������	

� NOP sleds are largely unnecessary for Windows
exploits due to register springs

� Register springs, among other techniques, allow
for a great deal of polymorphism in

� Simple polymorphic decryptors for would
probably range from 19 to 32 bytes long
� Short enough to evade many string matching

approaches (for example in Earlybird [Singh et al.
OSDI 2004], ==40)

� Abstract Payload Execution [Toth and Kruegel. RAID
2002] saw MELs in HTTP traffic of 14

0�������,�	�
��

mov eax,030a371ech ; b8ec71a339
add eax,0fd1d117fh ; 057f111dfd
add eax,0b00c383fh ; 053f380cb0
push eax ; 50
add eax,03df74b4bh ; 054b4bf73d
add eax,0e43bf9ceh ; 05cef93be4
push eax ; 50
...
add eax,02de7c29dh ; 059dc2e702
add eax,014b05fd8h ; 05d85fb014

push eax ; 50
add eax,06e7828dah ; 05da28786e
call esp ; ffd4

0�������,�	�
��

� Buttercup [Pasupulati et al. NOMS 2004]
� Hundreds or thousands of register springs

are usually possible (11,009 for EBX in
DCOM, 353 for ESP in Slammer)
� Variance across service packs is not really a

problem

� Format string attacks: “%100d%100d%100d”
can be rewritten as “%80p%90f%130x”

2�����
����

� Polymorphism in
� DACODA
� Signature generation

� Minos as an active honeypot seeking passive
exploits (P2P, web browser, …)

� Performance (QEMU instead of Bochs?)

������	���	
$%&

� Emphasis on the NOP sled in polymorphic worm
studies may not be appropriate for Windows exploits

� This figure does not capture the complexity of real
exploits:

������	���	
$'&

� Minos is a very capable honeypot technology
looking ahead to the new vulnerability
landscape

� Much polymorphism is available in and ,
should look at instead

