
Detecting Malicious Code
by Model Checking

Johannes Kinder, Stefan Katzenbeisser,
Christian Schallhart, Helmut Veith.

Conference on Detection of Intrusions and Malware
& Vulnerability Assessment, DIMVA 2005

8. July 2005 Detecting Malicious Code by Model Checking
J. Kinder, S. Katzenbeisser, C. Schallhart, H. Veith

2/27

Computer Security IncidentsComputer Security Incidents

Computer Security Incidents from 1988-2003 (Source: CERT)

8. July 2005 Detecting Malicious Code by Model Checking
J. Kinder, S. Katzenbeisser, C. Schallhart, H. Veith

3/27

EE--Mail Worms Mail Worms –– PrevalencePrevalence

Computer worms in incoming e-mails at the Department of Computer
Science of the TUM in September 2004.

8. July 2005 Detecting Malicious Code by Model Checking
J. Kinder, S. Katzenbeisser, C. Schallhart, H. Veith

4/27

EE--Mail Worms Mail Worms –– FactsFacts

• Predominantly variants of existing worms
– Currently 200 new threats per month (Symantec)

– More than 30 variants of NetSky, up to 3 in one day

– Source code often widely distributed

– ‘Script-Kiddies’

– Variants differ only slightly in terms of functionality

– Binary worm code can be highly different (compiler
settings, executable packers)

• Timely updates to virus detectors are critical

8. July 2005 Detecting Malicious Code by Model Checking
J. Kinder, S. Katzenbeisser, C. Schallhart, H. Veith

5/27

Window of VulnerabilityWindow of Vulnerability

In case of the Sober.C worm, this timespan ranged
from 10 hours up to 4 days! (Source: Virus Bulletin, 02/04)

Malware
Release

Report to
AV Vendor

Signature
Release

Client
Update

Client Systems Vulnerable

working on update deployment

8. July 2005 Detecting Malicious Code by Model Checking
J. Kinder, S. Katzenbeisser, C. Schallhart, H. Veith

6/27

Detection MethodsDetection Methods

• Signature Matching
– Regular expressions

– Fast and reliable

– Not mutation tolerant (Christodorescu, Jha 2003)

• Dynamic Analysis
– Limited timespan, not all execution paths

– Useful for monitoring (IDS)

• Static Analysis
– Verification of possible behavior

– Relies on disassembly

8. July 2005 Detecting Malicious Code by Model Checking
J. Kinder, S. Katzenbeisser, C. Schallhart, H. Veith

7/27

Model CheckingModel Checking

• Well proven verification method

• Classically used for verifying properties such as
Fairness and Liveness in distributed systems

• Verifies whether a model obeys a specification
– Models are given as labeled transition systems

– Specifications are given in temporal logics (e.g. CTL or LTL)

Example for Fairness:

“Whenever a process requests to enter its critical area,
it is eventually allowed to do so”

8. July 2005 Detecting Malicious Code by Model Checking
J. Kinder, S. Katzenbeisser, C. Schallhart, H. Veith

8/27

Model Checking Model Checking –– ExampleExample

• CTL specification of Fairness:

• Model:

AG (req→ AF crit)

req

reqreq

crit

8. July 2005 Detecting Malicious Code by Model Checking
J. Kinder, S. Katzenbeisser, C. Schallhart, H. Veith

9/27

Malicious Code DetectionMalicious Code Detection

• Specification of malicious behavior

• Model extraction from executable machine code

• Verification by Model Checking

Model Specification

8. July 2005 Detecting Malicious Code by Model Checking
J. Kinder, S. Katzenbeisser, C. Schallhart, H. Veith

10/27

Model ExtractionModel Extraction

• Worms are commonly packed
by executable packers (e.g. UPX)
and need to be unpacked

• Disassembly transforms an
executable byte sequence into a
sequence of instructions

• Control flow graphs display
conditional branches and loops
in the executable

• The graph is annotated with
assembler instructions and
locations (offsets)

Unpacking

Disassembly

Control Flow Graph
Extraction

Model Creation

8. July 2005 Detecting Malicious Code by Model Checking
J. Kinder, S. Katzenbeisser, C. Schallhart, H. Veith

11/27

Model Extraction Model Extraction –– ExampleExample

label1: cmp ebx, [bp-4]

jz label2

dec ebx

jmp label1

label2: mov eax, [bp+8]

...

8. July 2005 Detecting Malicious Code by Model Checking
J. Kinder, S. Katzenbeisser, C. Schallhart, H. Veith

12/27

Model Extraction Model Extraction –– ProblemsProblems

• Indirect jumps (jump targets calculated at runtime)
cannot be resolved statically in general

• Thorough code obfuscation may thwart disassembly

• Self modifying code

• x86 allows unaligned jumps ‘into’ an instruction

State-of-the-art disassemblers are able to successfully process
compiler generated code. This includes most of the prevalent
E-mail worms.

8. July 2005 Detecting Malicious Code by Model Checking
J. Kinder, S. Katzenbeisser, C. Schallhart, H. Veith

13/27

Malicious Behavior Malicious Behavior –– ExampleExample

...

xor ebx,ebx # clear register

lea eax, [ebp+ExFileName] # store address of buffer

push 0x0104 # size of string buffer

push eax # push address

push ebx # push a zero

call ds:GetModuleFileNameA # system call

lea eax, [ebp+NewFileName] # store destination address

push ebx # push a zero

push eax # push destination

lea eax, [ebp+ExFileName] # store source address

push eax # push source address

call ds:CopyFileA # system call

...

Code fragment of the Klez.h worm

8. July 2005 Detecting Malicious Code by Model Checking
J. Kinder, S. Katzenbeisser, C. Schallhart, H. Veith

14/27

Malicious Behavior Malicious Behavior –– CharacteristicsCharacteristics

• Temporal and functional
dependencies of system
calls characterize behavior

• Arbitrary order of
independent instructions

• Register and variable
substitution

• Flexibility and and
readability of specifications

...

xor ebx,ebx

lea eax, [ebp+ExFileName]

push 0x0104

push eax

push ebx

call ds:GetModuleFileNameA

lea eax, [ebp+NewFileName]

push ebx

push eax

lea eax, [ebp+ExFileName]

push eax

call ds:CopyFileA

...

8. July 2005 Detecting Malicious Code by Model Checking
J. Kinder, S. Katzenbeisser, C. Schallhart, H. Veith

15/27

Specifying Behavior Specifying Behavior –– CTLCTL

• The logic CTL allows the specification of temporal properties
of systems

• Examples:

8. July 2005 Detecting Malicious Code by Model Checking
J. Kinder, S. Katzenbeisser, C. Schallhart, H. Veith

16/27

Specifying Behavior Specifying Behavior –– CTPLCTPL

• The new logic CTPL is based on CTL but allows free
variables in propositions and quantifiers in formulas

Through this extension, CTPL becomes particularly useful
for specifying behavior of assembler code

8. July 2005 Detecting Malicious Code by Model Checking
J. Kinder, S. Katzenbeisser, C. Schallhart, H. Veith

17/27

• Example 1: Initialize register with zero; later this
register is pushed onto the stack

• Example 2: Same as 1, but ensure integrity of the
register

CTPL SpecificationsCTPL Specifications

8. July 2005 Detecting Malicious Code by Model Checking
J. Kinder, S. Katzenbeisser, C. Schallhart, H. Veith

18/27

CTPL Specifications CTPL Specifications –– System CallsSystem Calls

• System call with parameter initialization:

Parameter Initialization

Stack layout, invoke system call

8. July 2005 Detecting Malicious Code by Model Checking
J. Kinder, S. Katzenbeisser, C. Schallhart, H. Veith

19/27

CTPL Specifications CTPL Specifications –– System CallsSystem Calls

• System call with parameter initialization:

Formulas are linked by the location predicate #loc

8. July 2005 Detecting Malicious Code by Model Checking
J. Kinder, S. Katzenbeisser, C. Schallhart, H. Veith

20/27

CTPL Specification Based on KlezCTPL Specification Based on Klez

8. July 2005 Detecting Malicious Code by Model Checking
J. Kinder, S. Katzenbeisser, C. Schallhart, H. Veith

21/27

CTPL Specification Based on KlezCTPL Specification Based on Klez

8. July 2005 Detecting Malicious Code by Model Checking
J. Kinder, S. Katzenbeisser, C. Schallhart, H. Veith

22/27

CTPL Specification Based on KlezCTPL Specification Based on Klez

8. July 2005 Detecting Malicious Code by Model Checking
J. Kinder, S. Katzenbeisser, C. Schallhart, H. Veith

23/27

MacroMacro--Supported CTPLSupported CTPL

• Recurring patterns in specifications can be
encapsulated by a set of macros

• Unneeded variables are replaced by wildcards

• Allows succinct and natural specifications

%nostack %noassign %syscall %sysfunc

stack integrity variable integrity system call system call with
return value

EF(

%syscall(GetModuleFileNameA, $*, $pFile, 0) &

E %noassign($pFile) U %syscall(CopyFileA, $pFile)

)

CTPL specification based on Klez in prototype syntax

8. July 2005 Detecting Malicious Code by Model Checking
J. Kinder, S. Katzenbeisser, C. Schallhart, H. Veith

24/27

CTPL Model Checking AlgorithmCTPL Model Checking Algorithm

• Based on classic explicit CTL Model Checking
– Linear time algorithm by Clarke and Emerson

– Bottom-up evaluation of the formula

– Dynamic programming

• The CTPL algorithm has to collect variable bindings

• CTPL Model Checking is PSPACEPSPACEPSPACEPSPACE-complete

• Efficient in real world settings:
– Algorithm is exponential in size of the specification,

– But linear in size of the model

8. July 2005 Detecting Malicious Code by Model Checking
J. Kinder, S. Katzenbeisser, C. Schallhart, H. Veith

25/27

Experimental ResultsExperimental Results

Badtrans.a — √ 102.0
Bugbear.a √ √ 5.0
Bugbear.e — — 1.6
Dumaru.a √ — 3.7
Dumaru.b √ — 3.6
Klez.a √ — 2.2
Klez.e √ — 5.9
Klez.h √ — 6.0
MyDoom.a √ — 2.7
MyDoom.i √ — 2.2
MyDoom.m √ — 2.2
NetSky.b √ — 5.6
NetSky.d √ — 1.9
NetSky.p √ — 0.6
Nimda.a — √ 3.4
Nimda.e — √ 4.9

CopySelf

ExecOpened

Time (s)

8. July 2005 Detecting Malicious Code by Model Checking
J. Kinder, S. Katzenbeisser, C. Schallhart, H. Veith

26/27

SummarySummary

• Model Checking is suited for mutation tolerant
detection of malware

• One specification fits a large class of worms

• Proactive detection raises skill threshold for malware
writers

• Future directions:
– Abstraction of assembler code

– Extensible macro language

– Efficient implementation (e.g. with OBDDs)

– Make use of program analysis techniques (data flow, slicing,
interval analysis)

8. July 2005 Detecting Malicious Code by Model Checking
J. Kinder, S. Katzenbeisser, C. Schallhart, H. Veith

27/27

Thank youThank you

Thank you for your attention.

Questions?

