
Detection of Intrusions and Malware & Vulnerability Assessment (DIMVA05) July 7th-8th, 2005, Vienna

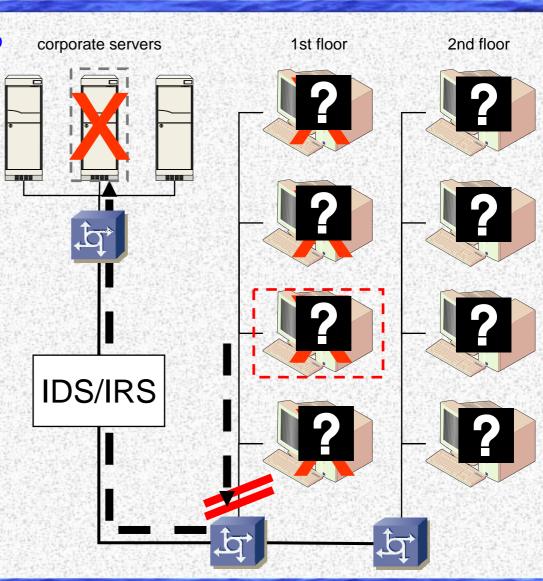
Combining IDS and Honeynet Methods for Improved Detection and Automatic Isolation of Compromised Systems B.Tödtmann, S.Riebach, E.P. Rathgeb

Dipl. Wirt.-Inf. Stephan Riebach Computer Networking Technology Group

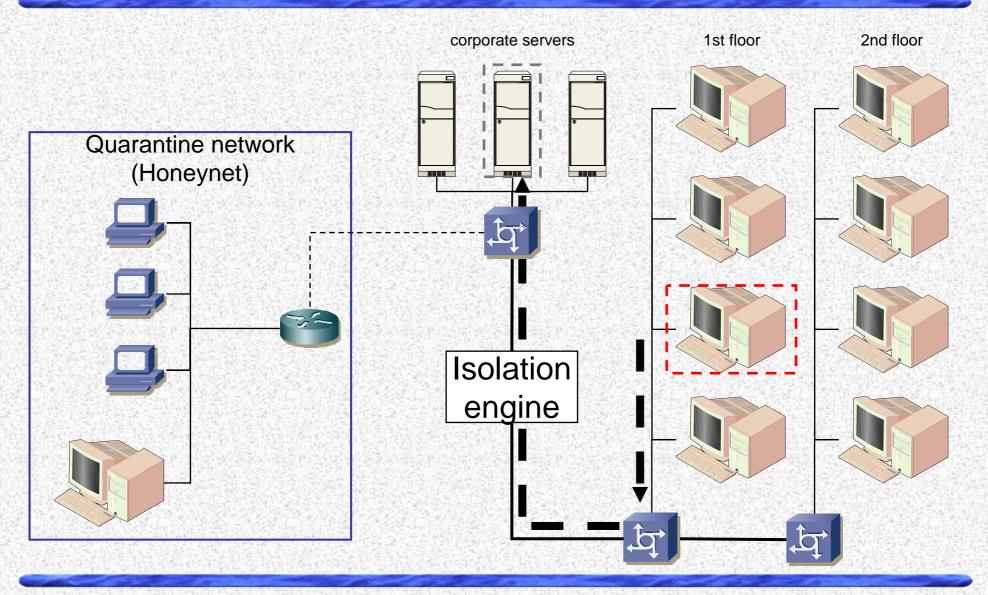
Institute for Experimental Mathematics (IEM) and Institute for Computer Science and Business Information Systems (ICB)
University Duisburg-Essen, Germany

- Introduction and motivation
- 2. IDS/IRS: concepts and limitations
- 3. Automated isolation of suspicious systems
- 4. Prototype implementation
- 5. Conclusion and Outlook

Introduction & Motivation

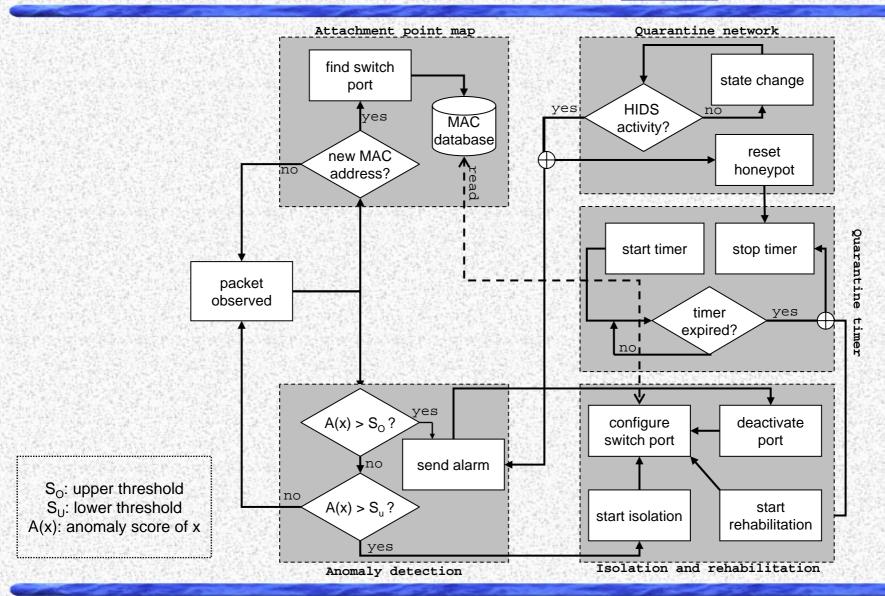

- mobile/wireless computing rapidly changed situation in corporate networks
 - in the past: single network entry point, fixed stations
 - today: mobile stations that move out of the corporate network
- mobile computing decreases system administrators control level
 - stations move in non-secured areas, e.g. public and home networks
- "on the road" those systems can be infected within a few minutes
 - less secured systems fully exposed to the internet
- corporate firewalls protect a LAN against attacks from the Internet
 - Sunday: University Bochum, Hacker gained access to 40.000 mailboxes
- common IDS are passive systems: attack → detection → log-file
- IRS can cause negative side effects due to false positives
- IDS limitations
 - misuse detection: false negatives because of unknown attacks, false positives for non-customized rules
 - anomaly detection: false positives in training phase, software changes

Impact of Intrusion Response


a station becomes suspicious due to scans

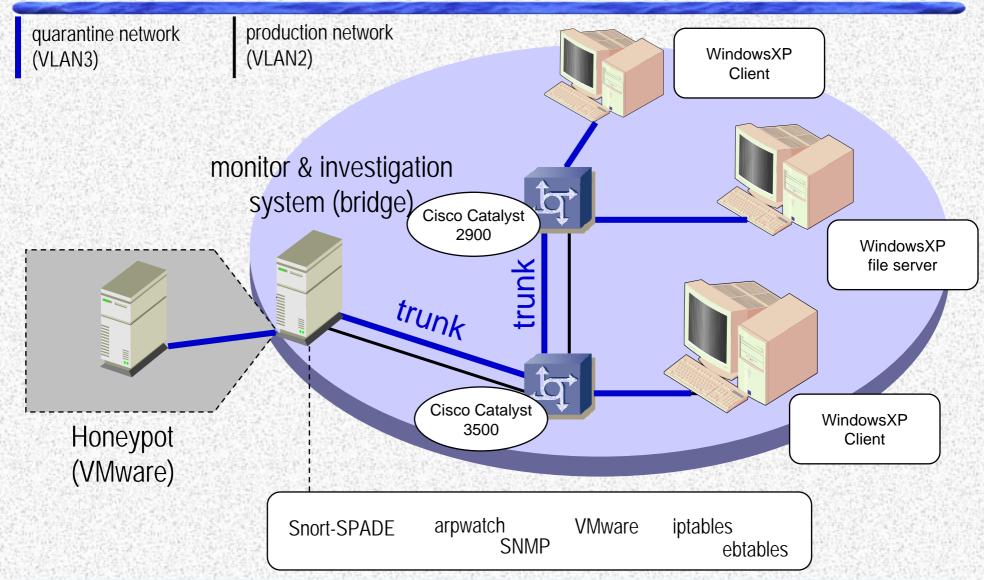
- common IRS alternatives
 - session locking
 - connection disabling
 - server disabling
- problems of Intrusion Response
 - suspicion cannot be proven
 - station may belong to CEO ©
 - every change of network-based software causes IR
- in general: false positives cause significant damage
 - denial of service
 - staff cannot work
 - trust in IT will be decreased
 - problem of costs

Our approach: isolation



- anomaly-based NIDS flags a suspicious system
- isolation engine "moves" the system into a Honeynet
 - layer 2 based switch technology → VLANs
- traffic observation
 - due to restrictive firewall rules usual traffic will be possible from inside the Honeynet, such as SMTP, HTTP etc.
 - all other traffic is redirected to Honeypots
- quarantine timer
 - if the IDS (HIDS and/or NIDS) inside of the Honeynet reports any further malicious activity → permanent deactivation
 - if no other activity occurs → rehabilitation

Concept overview



- incident-driven system which combines well-known technologies
 - anomaly-based NIDS
 - Honeypots/Honeynets
 - IEEE 802.1q VLANs
 - SNMP messages
- starting incident is the alarm generated by NIDS
- choosing anomaly NIDS
 - detecting new attacks
 - improving NIDS accuracy
 - Honeynets for evaluation of alarms
- deploying Honeynets
 - controlled environment to observe suspicious systems → data control
 - powerful tools to detect attacks (NIDS/HIDS) → data capture
 - physical disjunction from production network

Prototype Implementation

Prototype implementation (II)

Snort-Spade anomaly NIDS

- plugin for Snort
- first prototypes with single-threshold
- incident reporting via syslog
- syslog sends all alerts to a named pipe

Attachment point map

- arpwatch to detect newly activated systems
- the script "mac2port" automatically extracts a stations port when arpwatch "sees" a new station
- mac2port sends SNMP requests to all switches
- information stored in text files

Isolation/Rehabilitation

- Spade alarm triggers the isolation
- sending SNMPv3 "set" request to switch to change VLAN
- second message to clear switch MAC table

Prototype implementation (III)

Isolation/Rehabilitation

- named pipes for total deactivation or rehabilitation (guilty/notguilty)
- isolation function starts qtimer (20 min.)

Quarantine network

- VMware workstation with WindowsXP guest
- guest in non-persistant mode
- all filesystem changes are stored in REDO-logs
- rebooting the Honeypot = set to unchanged state

VMware based HIDS

- requires guest filesystem FAT32, not NTFS
- only changes of filesystem are stored → REDOs have finite size
- periodically comparing REDO_{now} with REDO_{t-10sec} with xdelta
- revealing newly created files
- specialized for worm/virus detection

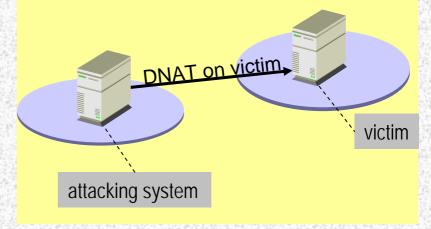
Prototype implementation (IV)

Bridge and filter configuration

- bridge with 3 interfaces (2 physical for VLANs, 1 virtual)
- netfilter under Linux with tools iptables and ebtables
- arp traffic possible between VLAN2 and VLAN3
- traffic from VLAN3 → VLAN2
 - harmless traffic (DNS, HTTP, SMB) is allowed
 - any other traffic redirected to Honeypot

some example rules

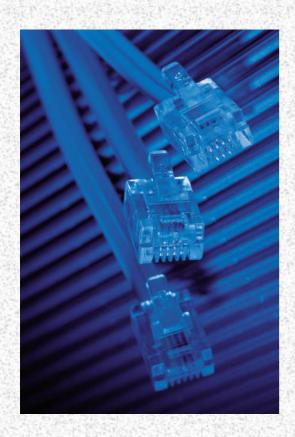
```
ebtables -t nat -A PREROUTING -j ACCEPT --in-if eth0.3
--protocol ip --ip-destination 0.0.0.0 --ip-protocol 17
--ip-destination-port 53
iptables -t nat -A PREROUTING -j ACCEPT -m physdev
--physdev-in eth0.3 --destination 0.0.0.0
--protocol udp --destination-port 53
```


Evaluation: Simulating false positive scenario and worm attack

- Scenario A: Skype in the production network
 - client system scanned for peer nodes
 - activity flagged within 2-7 seconds
 - isolation to VLAN3 within 1 second
 - total reaction time: 8 seconds
 - HIDS reported no new EXE or DLL files
 - after 20 minutes successful rehabilitation
- Scenario B: Lovesan.A worm infection
 - execution of Lovesan.A on client
 - TCP scans were detected by SPADE
 - client was isolated to VLAN3
 - total reaction time: 9 seconds
 - the client infected the Honeypot
 - HIDS detected "MSBLAST.EXE"
 - deactivation of client's switch port
- both clients (in A and B) could still access corporate servers

reference times (worst case)

	Test 1	Test 2	Test 3
Lovesan.A	13 sec.	16	15
Lovesan.F	14 sec.	11	16
Sasser.A	5 sec.	4	6
Sasser.B	9 sec.	8	7
Welchia A,E,G,H	After activation all variants were inactive for at least 5 minutes		
Randex.I			


Prototype limitations

- prototype supporting only one broadcast domain
 - VLANS cannot spread beyond a IP subnet
- SNMP mechanism requires equipment supporting VLAN-specific MIBs
- prototype allows isolation of only one system at a time
 - no multiple incident handling
 - multiple incident handling requires multiple VLANs and virtual honeynets
- VMware based HIDS is still not fully reliable
 - false negatives occurred (new DLLs and EXEs not found in REDO files)
- still no process monitoring HIDS deployed
- still no user traffic adjustment
 - starting the same suspicious but harmless software causes recurring isolation processes
 - rule-based customization affects the anomaly-based approach

- we demonstrate a way to deploy a two step IRS
 - combining IDS (security observation)
 - and Honeynets (forensics)
- our prototype improves LAN security
 - e.g. inhibit worm spreading in LANs
- alarms generated by anomaly-based IDS are validated
 - usage of Honeynet technology
- suspicious systems will not be deactivated
 - tolerable traffic limitations while observing
- future work
 - storing non-malicious activity
 - "calibration" of anomaly-based NIDS
 - multiple incident handling

Thank you for your attention!