An SVM-based Masquerade Detection Method with Online Update Using Co-occurrence Matrix

Liangwen Chen, Masayoshi Aritsugi Gunma University, Japan

Outline

- Background
- Conventional results
- Our proposal
- Experiments
- Conclusion

Background

- A computer can provide multiple services to multiple users
- Users can login to a computer through network

Security mng. costs increase

Hard to protect computers from malicious access completely

Masquerade detection

Conventional results

Researchers	Approaches	False Positive	Hit
Nescal cliefs	Approactics	Rate	Rate
	Uniqueness	1.4%	39.4%
	Bayes one-step Markov	6.7%	69.3%
Schonlau et al.	Hybrid multistep Markov	3.2%	49.3%
Schomau et al.	Compression	5.0%	34.2%.
	Sequence Matching	3.7%	36.8%
	IPAM	2.7%	41.1%
Maxion and	Naïve Bayes (updating)	1.3%	61.5%
Townsend	Naïve Bayes (no updating)	4.6%	66.2%
Kim and Cha	SVM-based approach with voting	9.7%	80.1%
Oka et al.	ECM	2.5%	72.3%

Problems

- Conventional researches have attempted to improve the accuracy rate
- Users' behaviors would change with time

Need to adapt to changes

	ECM
False Positive	2.5%
Hit Rate	72.3%
ROC Score	0.918
Training cost	1046.37 min.
Detection cost	22.13 sec.
CPU	Xeon 3.2GHz
Memory Size	4GB

Our strategy

- To borrow the same data
 - To compare results with conventional work
- To borrow ECM
 - Low false positive rate
 - High hit rate
 - High ROC score
- To exploit SVM
 - Low training cost
 - Adapt to changes of users' behaviors

Correlation of commands

```
time
```

```
User1: cd ls less ls less cd ls cd cd ls
```

User3: mkdir cp cd ls cp ls cp cp cp

```
cd (ls) less (ls) less cd ls cd cd ls
```

Strength of correlation of ls and less: 2+1=3

Co-occurrence matrix

User1: cd ls less ls less cd ls cd cd ls
User2: emacs gcc gdb emacs ls gcc gdb ls ls emacs
User3: mkdir cp cd ls cp ls cp cp cp

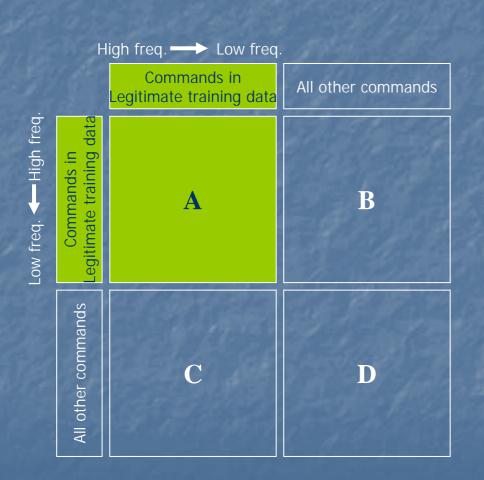
 cd
 ls
 less
 emacs
 gcc
 gdb
 mkdir
 cp

 cd
 0
 0
 0
 0
 0
 0
 0
 0

 ls
 0
 3
 0
 3
 1
 1
 0
 0

 less
 0
 0
 0
 0
 0
 0
 0
 0

 emacs
 0
 4
 0
 1
 3
 3
 0
 0

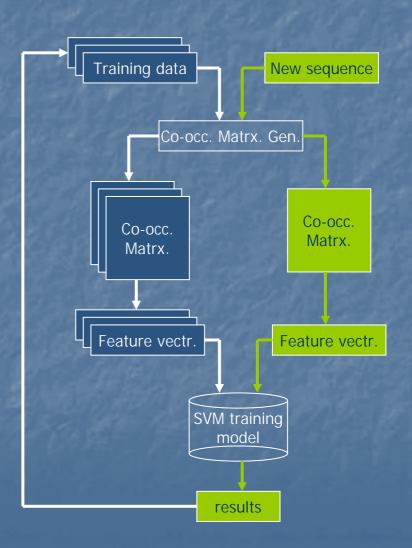

 gcc
 0
 4
 0
 2
 1
 3
 0
 0

 gdb
 0
 5
 0
 2
 1
 1
 0
 0

 mkdir
 0
 0
 0
 0
 0
 0
 0
 0

 cp
 0
 0
 0
 0
 0
 0
 0
 0

Our co-occurrence matrix


	cd	ls	less	emacs	gcc	gdb	mkdir	cp
cd	(0	0	0	0	0	0	0	0
ls	0	3	0	3	1	1	0	0
less	0	0	0	0	0	0	0	0
emacs	0	4	0	1	3	3	0	0
gcc	0	4	0	2	1	3	0	0
gdb	0	5	0	2	1	1	0	0
mkdir	0	0	0	0	0	0	0	0
cp	0	0	0	0	0	0	0	0

	ei	macs	ls	gcc	gdb	cd	less	mkdir	cp
emacs		2	4	3	3	0	0	0	0
ls	t	3	3	1	1	0	0	0	0
gcc	P	2	4	1	3	0	0	0	0
gdb	1	2	5	1	1	0	0	0	0
cd	p	0	0	0	0	0	0	0	0
less	E	0	0	0	0	0	0	0	0
mkdir	۳	0	0	0	0	0	0	0	0
cp	r	0	0	0	0	0	0	0	0

System overview

- Co-occ. Matrx. generation
- SVM feature vectr. generation
- SVM processing
- Results
- Refinement

	ECM	Our method (based on 2-class SVM)
False Positive	2.5%	3.0%
Hit Rate	72.3%	72.74%
ROC Score	0.918	0.926
CPU	Xeon 3.2GHz	Pentium III 1.4GHz
Memory Size	4GB	512MB
Training cost	1046.37 min.	117.33 sec.
Detection cost	22.13 sec.	0.04 sec.

	ECM	Our method (based on 2-class SVM)
False Positive	2.5%	3.0%
Hit Rate	72.3% Alm	ost the same4%
ROC Score	0.918	0.926
CPU	Xeon 3.2GHz	Pentium III 1.4GHz
Memory Size	4GB	512MB
Training cost	1046.37 min.	117.33 sec.
Detection cost	22.13 sec.	0.04 sec.

	ECM	Our method (based on 2-class SVM)
False Positive	2.5%	3.0%
Hit Rate	72.3%	72.74%
ROC Score	0.918	0.926
CPU	Xeon 3.2GHz	Pentium III 1.4GHz
Memory Size	4GB	er power machine 512MB
Training cost	1046.37 min.	117.33 sec.
Detection cost	22.13 sec.	0.04 sec.

	ECM	Our method (based on 2-class SVM)
False Positive	2.5%	3.0%
Hit Rate	72.3%	72.74%
ROC Score	0.918	0.926
CPU	Xeon 3.2GHz	Pentium III 1.4GHz
Memory Size	4GB	512MB
Training cost	1046.37 min.	Smaller 117.33 sec.
Detection cost	22.13 sec.	0.04 sec.

		ECM	Our method	VM)		
False P	With lower power machine					
Hit I ROC : CP	Training cost:535times smaller Detection cost:553times smaller Achieved almost the same good charac.					
Memory		4UD	DIZIVID	Hz		
Training cost		1046.37 min.	117.33 sec.	000		
Detection cost		22.13 sec.	0.04 sec.	300		

Online update

 To run the system a.s.a.p. even if we don't have enough amount of data for training

To adapt changes of users' behaviors

- Our proposal is with low comput. cost
- Online update of training model
- By modifying application of the data

2-class and 1-class based methods

- 2-class vs. 1-class
 - Data: 2-class > 1-class
 - Cost: 2-class > 1-class

Accuracy: 2-class > 1-class

We look them concretely by experiments

# trained commands	20 blks. (10000)	30 blks. (15000)	40 blks. (20000)	50 blks. (25000)	
False Positive	8%	6%	5%	3%	
Hit Rate	68%	69%	68%	72.74%	
ROC Score	0.89	0.90	0.91	0.93	
Update costs	43.86 s	59.53 s	89.65 s	107.30 s	
SVM training costs	3.36 s	7.04 s	6.90 s	10.03 s	
Detection cost	0.04 s				

# trained	20 blks.	30 blks.	40 blks.	50 blks.	
commands	(10000)	(15000)	(20000)	(25000)	
False Positive	8%	69mpro	oved5%	3%	
Hit Rate	68%	69%	68%	72.74%	
ROC Score	0.89	0.90	0.91	0.93	
Update costs	43.86 s	59.53 s	89.65 s	107.30 s	
SVM training costs	3.36 s	7.04 s	6.90 s	10.03 s	
Detection cost	0.04 s				

# trained	20 blks.	30 blks.	40 blks.	50 blks.	
commands	(10000)	(15000)	(20000)	(25000)	
False Positive	8%	69mpro	ved5%	3%	
Hit Rate	68%	69lmpro	ve ő 8%	72.74%	
ROC Score	0.89	0.90	0.91	0.93	
Update costs	43.86 s	59.53 s	89.65 s	107.30 s	
SVM training costs	3.36 s	7.04 s	6.90 s	10.03 s	
Detection cost	0.04 s				

# trained	20 blks.	30 blks.	40 blks.	50 blks.
commands	(10000)	(15000)	(20000)	(25000)
False Positive	8%	69mproved5%		3%
Hit Rate	68%	69improved8%		72.74%
ROC Score	0.89	0.9mproved.91		0.93
Update costs	43.86 s	59.53 s	89.65 s	107.30 s
SVM training costs	3.36 s	7.04 s	6.90 s	10.03 s
Detection cost	0.04 s			

# trained commands	20 blks. (2000)	30 blks. (3000)	40 blks. (4000)	50 blks. (5000)
False Positive	12%	8%	7%	6%
Hit Rate	68%	64%	61%	62.77%
ROC Score	0.85	0.86	0.87	0.88
Update costs	0.88 s	1.53 s	1.79 s	2.15 s
SVM training costs	0.17 s	0.18 s	0.22 s	0.27 s
Detection cost	0.04 s			

# trained commands	20 blks. (2000)	30 blks. (3000)	40 blks. (4000)	50 blks. (5000)
False Positive	12%	8%mproved7%		6%
Hit Rate	68%	64%	61%	62.77%
ROC Score	0.85	0.86	0.87	0.88
Update costs	0.88 s	1.53 s	1.79 s	2.15 s
SVM training costs	0.17 s	0.18 s	0.22 s	0.27 s
Detection cost	0.04 s			

# trained commands	20 blks. (2000)	30 blks. (3000)	40 blks. (4000)	50 blks. (5000)
False Positive	12%	8%mproved7%		6%
Hit Rate	68%	64%	61%	62.77%
ROC Score	0.85	0.8mproved.87		0.88
Update costs	0.88 s	1.53 s	1.79 s	2.15 s
SVM training costs	0.17 s	0.18 s	0.22 s	0.27 s
Detection cost	0.04 s			

Results: 2-class vs. 1-class

2-class

1-class

# trained commands	20 blks. (10000)	30 blks. (15000)	40 blks. (20000)	50 blks. (25000)
False Positive	8%	6%	5%	3%
Hit Rate	68%	69%	68%	72.74%
ROC Score	0.89	0.90	0.91	0.93
Update costs	43.86 s	59.53 s	89.65 s	107.30 s
SVM training costs	3.36 s	7.04 s	6.90 s	10.03 s
Detection cost	0.04 s			

# trained commands	20 blks. (2000)	30 blks. (3000)	40 blks. (4000)	50 blks. (5000)
False Positive	12%	8%	7%	6%
Hit Rate	68%	64%	61%	62.77 %
ROC Score	0.85	0.86	0.87	0.88
Update costs	0.88 s	1.53 s	1.79 s	2.15 s
SVM training costs	0.17 s	0.18 s	0.22 s	0.27 s
Detection cost	0.04 s			

Conclusion

Results

- Extension of ECM with low computing costs
- Availability with online update

Future work

- To do more experiments with other data
- To improve accuracy by integrating several methods
- To test and extend our proposal to other applications like databases (SQL injections)

Thank you