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Code obfuscation and self-mutation

I Code obfuscation is a semantic-preserving program transformation
that can be used to make a program harder to understand

I Self-mutation is a particular form of code obfuscation, which is
performed automatically by the code on itself

I Self-mutation is adopted by malicious code to defeat detectors

I Self-mutation is applied during malicious code replication to generate
completely new different instances
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Self-mutation

Common transformations adopted to achieve self-mutation:
I Substitution of instructions

I Permutation of instructions

I Garbage insertion

I Substitution of variables

I Control flow alteration

Signature matching becomes useless
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Code insertion

Common techniques adopted for malicious code insertion:
I Cavity insertion

I Jump tables manipulation

I Data segment expansion

The malicious code is seamless integrated into the host code
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Challenges for the detection

Conventional detection techniques are likely to fail:
I Pattern matching fails since fragmentation and mutation make hard to

find signature patterns

I Emulation would require a complete tracing of analyzed programs as
the entry point of the guest is not known; moreover every execution
should be traced until the malicious payload is not executed

I Heuristics based on ad-hoc predictable and observable alterations of
executables become useless when insertion is performed producing
almost no alteration of any of the static properties of the original
binary

Theoretical studies (Chess & White) demonstrated that perfect detection
of a self-mutating malware is an undecidable problem
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Devised strategy

Code interpretation and normalization
I Given a piece of code P which represents (or

contains) an instance of a self-mutating
malware we automatically revert all the
mutations performed on it

I P is consequently reduced into a form, PN ,
which is pretty close to its archetype M and
which can be recognized more easily

Code comparison
I Detection is performed by looking for known

abstract patterns into the transformed
program PN
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Code normalization

Code normalization
A program is transformed into a canonical form which is simpler in term
of structure or syntax while preserving the original semantic and that is
more suitable for comparison

I Analysis of the transformations adopted to implement self-mutation
and experimental observations highlighted some weakness:
I Transformations led to the generation of useless computations
I Most transformations are invertible

I Different instances of the same malware can be viewed as
under-optimized version of the archetype; the archetype is
consequently the normal form of the malicious code

I Code normalization can be performed adopting some of the well known
techniques used by compiler to produce compact and efficient code
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Code normalization
Some details

I Executable code is disassembled and translated into an intermediate
form to explicit the semantic of each machine instruction

I Control-flow analysis and data-flow analysis are performed on the code
to collect information that will be used by the next step

I Code transformations aim at:
I Identify all the instructions that do not contribute to the computation

(dead and unreachable code elimination)
I Rewrite and simplify algebraic expressions in order to statically evaluate

most of their sub-expressions (algebraic simplification)
I Propagate values computed by intermediate instructions to the

appropriate use sites (expressions propagation)
I Analyze and try to evaluate control-flow transition conditions to identify

tautologies and to rearrange the control to reduce the number of flow
transitions (control-flow normalization)

I Analyze indirect control flow transitions to discover the smallest set of
valid targets and the paths originating (indirections resolution)

D. Bruschi, L. Martignoni, M. Monga Detecting Self-Mutating Malware Using Control-Flow Graph Matching DIMVA2006 9



Code comparison

Given the normalized program we need to answer the question:

“is the program PN hosting the malware M?”

I We cannot expect to find a perfect matching of M in PN even if most
of the transformations have been reverted

I The code comparator must be able to cope with some impurities left
by normalization (we observed that these impurities are always local to
basic blocks)

I The normalized control-flow of the malware is constant
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Code comparison
Some details

I PN is represented through its
interprocedural-control flow graph (ICFG)
and M through its control-flow graph

I The malicious code detection can be
formulated as a subgraph isomorphism
decision problem: “given two graphs G1 and
G2, is G1 isomorphic to a subgraph of G2?”
(G1 is M and G2 is PN)

I The graphs are augmented with labels to
achieve the necessary trade-off between
precision and abstraction (to handle possible
impurities)

I Instructions and flow transitions are
partitioned into classes; labels describe the
set of classes in which instructions of a basic
block can be grouped

M

PN

Instruction classes
Integer arithmetic
Float arithmetic
Logic
Comparison
Function call
. . .

D. Bruschi, L. Martignoni, M. Monga Detecting Self-Mutating Malware Using Control-Flow Graph Matching DIMVA2006 11



Code comparison
Some details

I PN is represented through its
interprocedural-control flow graph (ICFG)
and M through its control-flow graph

I The malicious code detection can be
formulated as a subgraph isomorphism
decision problem: “given two graphs G1 and
G2, is G1 isomorphic to a subgraph of G2?”
(G1 is M and G2 is PN)

I The graphs are augmented with labels to
achieve the necessary trade-off between
precision and abstraction (to handle possible
impurities)

I Instructions and flow transitions are
partitioned into classes; labels describe the
set of classes in which instructions of a basic
block can be grouped

M

PN

Instruction classes
Integer arithmetic
Float arithmetic
Logic
Comparison
Function call
. . .

D. Bruschi, L. Martignoni, M. Monga Detecting Self-Mutating Malware Using Control-Flow Graph Matching DIMVA2006 11



Code comparison
Some details

I PN is represented through its
interprocedural-control flow graph (ICFG)
and M through its control-flow graph

I The malicious code detection can be
formulated as a subgraph isomorphism
decision problem: “given two graphs G1 and
G2, is G1 isomorphic to a subgraph of G2?”
(G1 is M and G2 is PN)

I The graphs are augmented with labels to
achieve the necessary trade-off between
precision and abstraction (to handle possible
impurities)

I Instructions and flow transitions are
partitioned into classes; labels describe the
set of classes in which instructions of a basic
block can be grouped

M

PN

Instruction classes
Integer arithmetic
Float arithmetic
Logic
Comparison
Function call
. . .

D. Bruschi, L. Martignoni, M. Monga Detecting Self-Mutating Malware Using Control-Flow Graph Matching DIMVA2006 11



Code comparison
Some details

I PN is represented through its
interprocedural-control flow graph (ICFG)
and M through its control-flow graph

I The malicious code detection can be
formulated as a subgraph isomorphism
decision problem: “given two graphs G1 and
G2, is G1 isomorphic to a subgraph of G2?”
(G1 is M and G2 is PN)

I The graphs are augmented with labels to
achieve the necessary trade-off between
precision and abstraction (to handle possible
impurities)

I Instructions and flow transitions are
partitioned into classes; labels describe the
set of classes in which instructions of a basic
block can be grouped

M

PN

Instruction classes
Integer arithmetic
Float arithmetic
Logic
Comparison
Function call
. . .

D. Bruschi, L. Martignoni, M. Monga Detecting Self-Mutating Malware Using Control-Flow Graph Matching DIMVA2006 11



Prototype implementation

I The code normalizer is built on top of Boomerang, an open-source
decompiler:
I Translate machine code into the intermediate form through a recursive

disassembler
I Performs data-flow analysis on the intermediate form
I Performs the normalization steps previously described (some of the

transformation have been extended to suit our needs)
I Able to solve know patterns of indirection

I The prototype receives an executable files and emits its normalized
ICFGPN

I The ICFGPN
of the normalized program and the CFGM of the searched

malware are then fed to the VFlib2 library which is used to identify
possible matches

I In case of match the comparison routine returns the set of ICFGPN

nodes that match the ones of the CFGM
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Experimental results

Two independent tests were performed:

1. Evaluation of code normalization effectiveness:
I Several instances of the same self-mutating malicious code (the virus

MetaPHOR) were collected and normalized
I The normalized control-flow graphs were all isomorphic, they were not

before

2. Evaluation of code comparison precision:
I Different executables were collected and their ICFGs were built
I Each procedure CFG was used to simulate malicious code and searched

inside the ICFGs
I The results of the subgraph isomorphism detection procedure were

compared with the results obtained through code fingerprinting
I A random set of alleged false-positives and false-negatives were selected

and inspected by hand

D. Bruschi, L. Martignoni, M. Monga Detecting Self-Mutating Malware Using Control-Flow Graph Matching DIMVA2006 13



Experimental results
Some numbers

Type #
Executables 572
Functions (# nodes > 5) 25145
Unique functions (# nodes > 5) 15429

Positive results # %
Equivalent code 35 70
Equivalent code
(negligible differences) 9 18
Different code
(small number of nodes) 3 6
Unknown 1 2
Bug 2 4

Negative results # %
Different code 50 100

# nodes Average load Worst detection
(∼) time (secs.) time (secs.)
100 0.00 0.00
1000 0.09 0.00
5000 1.40 0.05
10000 5.15 0.14
15000 11.50 0.32
20000 28.38 0.72
25000 40.07 0.95
50000 215.10 5.85
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Summary

I We proposed a general strategy, based on static analysis, that can be
used to pragmatically fight malicious codes that adopt self-mutation
to circumvent detectors

I We developed a prototype tool and used it to show that a malware
that suffers a cycle of mutations in most cases can be brought back to
a canonical shape that is shared among all instances

I We showed that augmented control-flow graphs are well suited to
describe a peculiar piece of code and that reliable code identification
can be formulated as a subgraph isomorphism decision problem

I Although the subgraph isomorphism is a NP-complete problem, our
particular instance seems to be tractable (the graphs we are dealing
with are very sparse)
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Future works

I Extend our prototype to perform normalization on real world
executables and increase the effectiveness of normalization by
extending the quality of the analysis performed

I Evaluate algorithms for partial subgraph isomorphism matching and
the benefits they could give in our context

I Perform more exhaustive experiments using new malicious code

I Investigate attacks and countermeasures to defeat static analysis
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Thank you!
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