
1

Faculty of Computer Science

Privacy and Security Lab

Reaction:
The Internet Security Paradox

John McHugh
Canada Research Chair in Privacy and Security

Director, Privacy and Security Laboratory

Dalhousie University

mchugh@cs.dal.ca

© 2005-2006 by John McHugh

Faculty of Computer Science

Privacy and Security Lab

© 2005-2006 by John McHugh

A poke in the eye ...
My first experience with computer security came in

the late 1960s when the resident customer engineer
for the IBM 360/40 I worked on gave me a list of

about a dozen ways to execute a user program in
supervisor mode with a protection key of zero.

The first one that I tried crashed the computation

center computer at George Washington University in
an interesting way.

Working for a number of years as a scientific

applications programmer, I discovered a number of
ways to make machines do what I needed to do to
get my job done, but never thought seriously about

security until ...

2

Faculty of Computer Science

Privacy and Security Lab

© 2005-2006 by John McHugh

... (with a sharp stick)

...I became interested in program verification in the

late 1970s. Joining the Gypsy group at Texas, I fell
under the (financial) spell of the NSA, the only group

funding verification research at that time.

Using verification to develop systems that would be
difficult to compromise seemed to be a noble cause,

but it didn’t work out too well, and we have gone on
to other things.

In November of 1988, the Internet (such as it was)

got a rude awakening. Someone had released a self
replicating code that crashed some machines and
drastically slowed others. OUCH!!!

Faculty of Computer Science

Privacy and Security Lab

© 2005-2006 by John McHugh

Surprised? Who? ME??

Evidence seemed to point to a graduate student at

Cornell, Robert T. Morris, as the likely culprit. He
was eventually convicted and fined. When I recalled

a conversation that George Dinolt, then of the then
Ford Aerospace Corp. and I had with Morris’s father
in August of 1988, I was not surprised.

Being generally optimistic, I am surprised by the fact
that the same sorts situations that allowed the Morris
worm to propagate in 1988 are still prevalent today.

In my naïveté, I expected us to do better.

At the risk of sounding whiney, I’m going to talk
about this.

3

Faculty of Computer Science

Privacy and Security Lab

© 2005-2006 by John McHugh

Reactions to Morris

At the time of Morris, the internet was still primarily a

research and academic endeavor. NSA and DARPA
were the primary drivers of computer security

research. The DARPA program manager for much
of this work was Bill Scherlis, a faculty member at
CMU. DARPA decided to create an organization to

deal with future incidents of this type. DARPA
operated the Software Engineering Institute,
conveniently located at CMU, and CERT was born.

In the early days, the CERT could provide direct
assistance to almost anyone who experienced an

attack on their computer.

Faculty of Computer Science

Privacy and Security Lab

© 2005-2006 by John McHugh

The very name is reactive

• CERT initially stood for Computer Emergency

Response Team. It is now a registered service
mark, and there are numerous similarly styled

organizations throughout the world.

• While reaction is definitely called for in the wake of a
security incident, it is not clear that reactive

approaches address the root causes of our problems.

• If we reexamine the Morris worm, we see that it had
very little to do with security, per se.

4

Faculty of Computer Science

Privacy and Security Lab

© 2005-2006 by John McHugh

Why the “Morris Worm” worked

• The successful propagation of the worm was the

result of a mix of

• Misplaced trust (1 general case). Poor security
practice aggravated this case.

• Poor software engineering (2 cases)

Faculty of Computer Science

Privacy and Security Lab

© 2005-2006 by John McHugh

Misplaced trust.

• Unix systems have a notion of mutual trust.

• globally in /etc/hosts.equiv

• per user in .rhosts

• It is possible to configure systems so that a user

logged on to one machine need not give a password
to access a trusted peer.

• By cracking weak passwords, the Morris worm was

able to reach (and often infect) many machines
using this mechanism.

• One can argue that these are security issues, but

they also relate to complexity of operation.

5

Faculty of Computer Science

Privacy and Security Lab

© 2005-2006 by John McHugh

To share is golden, to err is human

• Networking is all about sharing. In the early days,

we were all friends and knew our friends would not
harm us. Much of the growth of the internet has

been driven by a desire to share, whether it be for a
fee or free.

• Unfortunately, in many cases the pursuit of

convenience in sharing has been at the expense of
any way to set and enforce limits.

• One might argue that not enough people have been

hurt to create a consensus for effective controls on
sharing. Most individuals and businesses see the
benefits as outweighing the risks.

Faculty of Computer Science

Privacy and Security Lab

© 2005-2006 by John McHugh

Software Engineering Failures
• The worm became “aware” of other machines

because they were mentioned in various files on
the infected host. This allowed two other attacks

• A buffer overflow exploit against fingerd

A message was constructed that was too big for
the array the program used to hold it. This
caused code in the message to be executed.

• A misconfiguration exploit against sendmail

Commands sent to the attacked host were
executed there.

• Both allowed the worm a foothold on another host.

6

Faculty of Computer Science

Privacy and Security Lab

© 2005-2006 by John McHugh

Buffer overflows are avoidable!!!

• The general solution of the buffer overflow

problem requires the programmer (or
programming environment) to reason about data

sizes. This requires a combination of type
information and input checking but has a low run
time cost.

• The problem can also be solved by checking data
structure references for legality at run time or by
using “type safe” languages such as Java rather

than unsafe languages such as C

• In general, Defensive Programming covers this
area.

Faculty of Computer Science

Privacy and Security Lab

© 2005-2006 by John McHugh

One root of the problem - bad education

• Many software engineering texts teach a contract

model of programming.

• The developer of a routine publishes an interface
specification.

• If the specification is honored by the user, a
specific result is guaranteed.

• If the specification is not honored, the results are

undefined.

• In the hands of honorable and conscientious
participants, all is well, but deliberate contract

violations lead to things like buffer overflows. So
does carelessness.

7

Faculty of Computer Science

Privacy and Security Lab

© 2005-2006 by John McHugh

The wages of complexity are chaos!

• The misconfiguration problem is more subtle. The

sendmail program was so complex that trial and
error was the rule. As Spafford noted

“Stories are often related about how system administrators

will attempt to write new device drivers or otherwise modify

the kernel of the OS, yet they will not willingly attempt to

modify sendmail or its configuration files.”

• The failure to design programs so that they can be
used easily, safely, and securely is a failure in the
“human factors” part of software engineering.

Faculty of Computer Science

Privacy and Security Lab

© 2005-2006 by John McHugh

Fast forward ... Nearly 18 years later
• One would think these problems would have

been fixed, but consider:

• Vul Note VU#394444MS Hyperlink Object

Library stack buffer overflow

• Vul Note VU#159220MS IE heap overflow

• Vul Note VU#988356 Mac OS X stack-based

buffer overflow via specially crafted TIFF file

• and others in the past few months.

• Note also that misplaced trust via file shares

and URLs is also a problem

8

Faculty of Computer Science

Privacy and Security Lab

© 2005-2006 by John McHugh

Unmanageable complexity

• As efforts are made to make operating systems

more robust, attackers are turning to applications

• Applications typically have access to anything the
user has and this is enough to do damage!

• The tendency to do everything on the web has
greatly increased the complexity of web browsers
and the applications they implicitly invoke.

• http://browserfun.blogspot.com/ is publishing a
browser vulnerability per day during July.

• A quick glance at the list of BlackHat briefings shows

a large number of sessions on applications

Faculty of Computer Science

Privacy and Security Lab

© 2005-2006 by John McHugh

Why can’t we get ahead?

• The adversaries have two things going for them

• Automation - Scripting in various forms reduces
the skill level needed top perform an exploit.

• With misplaced trust, the victim oftens performs the exploit

• Laziness - We don’t fix the fixable

• Before returning to the general theme, lets look at
a few interesting cases

9

Faculty of Computer Science

Privacy and Security Lab

© 2005-2006 by John McHugh

Evolution (attacks), Devolution (attackers)

Faculty of Computer Science

Privacy and Security Lab

© 2005-2006 by John McHugh

This old, but still the trend continues

• Scripting and automation continue to reduce the skill

levels associated with sophisticated exploits.

• Users are often persuaded to perform exploits with
the promise of something of value. Spyware is often

the residue.

• As applications increasingly do “useful” things
without being asked, the opportunities for scripted

exploits increase.

• Systems are too complex for users to give
meaningful guidance

10

Faculty of Computer Science

Privacy and Security Lab

© 2005-2006 by John McHugh

phf incident history – from Arbaugh’00

Faculty of Computer Science

Privacy and Security Lab

© 2005-2006 by John McHugh

This is also dated, but ...

• There is a school of thought that believes patch

availability is the key to stopping the spread of
exploits.

• Using CERT data from a few years ago, we found

that the patch was often available before (long
before) exploits started to appear.

• The script (or other automation) was key. The phf

exploit apparently became passé, then resurfaced.

• We have seen an acceleration in vul - exploit
timings, so this is probably not valid for many recent

cases, but it provides food for thought.

• Worms are persistent.

11

Faculty of Computer Science

Privacy and Security Lab

© 2005-2006 by John McHugh

Outside to inside - July 2003

Faculty of Computer Science

Privacy and Security Lab

© 2005-2006 by John McHugh

Internet wide disturbance

• The ripple in what would otherwise be a fairly

straight log/log plot of connectivity was observed
from at least Jan - Aug 2003.

• It went away when Blaster appeared in Aug 2003.

• A similar ripple existed from Feb 11 to May 31 2004
coinciding with the lifetime of Welchia-B

• In this case, the ripple is due to a few hundred

machines scanning at a low, fixed, rate induced
by a loop with a “sleep” system call to induce a
fixed scanning rate.

• In both cases, they persisted until killed, not patched.

12

Faculty of Computer Science

Privacy and Security Lab

© 2005-2006 by John McHugh

Back to reaction.

• Every once in a while, the internet gets another poke

in the eye. Some of the more significant ones:

• Melissa in (March1999)

• Code red (July 2001)

• Slammer (January 2003)

• Blaster (August 2003)

• Etc.

• DDoS attacks (seen 1999, widespread 2000+)

• A look at the advisories shows reactive responses.

Faculty of Computer Science

Privacy and Security Lab

© 2005-2006 by John McHugh

Reactive responses - 1

• For the worms and viruses, many of the “fixes” are

similar.

• Disable macros, block ports, etc.

• These are inherently reactive, and they reflect the

lack of a meaningful “security posture” for the pre-
infection victim.

• Note that a conservative - install and enable only

what you really need deployment approach -
would greatly reduce the ability of these malcodes
to propagate.

13

Faculty of Computer Science

Privacy and Security Lab

© 2005-2006 by John McHugh

Reactive responses - 2

• DDoS attacks provoked a different reaction. A

variety of approaches are used.

• Resource hardening - provision network and
servers to handle loads - Akamai, etc.

• Selective blocking / traffic modification

• Traceback mechanisms to identify sources

• Attackers are using `bot networks with thousands of

attackers and an “arms race” is in progress.

• Many attacks are combined with extortion attempts
and victims are often sites with marginal ability to

enlist law enforcement, e.g. pornography and
gambling.

Faculty of Computer Science

Privacy and Security Lab

© 2005-2006 by John McHugh

And so it continues

• The general notion of DDoS is to create an

unmanageable workload for the victim while keeping
the attacker workload manageable.

• Distributing the attack workload is one way -

hence the value of large `bot nets to attackers

• Amplifying effects is another - SMURF amplified
senders; recursive DNS attacks amplify volume.

• `Bots triggering amplifiers can produce Gb rate
attacks.

• But amplification is yet another example of

misplaced trust (and possibly a reaction to
complexity)

14

Faculty of Computer Science

Privacy and Security Lab

© 2005-2006 by John McHugh

So, what can we do?

• When I started doing research in security, the goal of

our sponsors was to produce systems that were very
difficult to compromise - “provably secure”

• By the mid 1990s, we had learned enough to start to

have modest success, but in limited ways

• In the mean time, the PC arrived and matured from a
toy to a tool (without giving up its childish ways -
Financial Times s peculation on post Gates Microsoft sometime around 11 or 12 July 2006)

• The customers voted with their pocketbooks, and the
goal of perfection (perceived to be at the expense of

utility) was largely abandoned.

• We gave up a quest for perfection, but did we
have to get such a bad alternative?

Faculty of Computer Science

Privacy and Security Lab

© 2005-2006 by John McHugh

Could we be proactive? - 1

• Staying ahead of attacks.

• Despite the fact that we have seen some
instances where the vul - exploit interval is very
small, there is a residue of published

vulnerabilities awaiting exploits.

• We should be working to try to correct the
underlying problems with routing, DNS, etc.

• The community also needs to put on their black
hats and develop analytical frameworks that can
predict attack trends and potential consequences.

15

Faculty of Computer Science

Privacy and Security Lab

© 2005-2006 by John McHugh

Could we be proactive? - 2

• Can we change development attitudes?

• Somehow, the creation of internet applications
needs to be seen as a craft with pride of
ownership.

• “779 days without a buffer overflow” to paraphrase the
signs at industrial plant entrances.

• Teach defensive programming. Repudiate the

contract model. MS is trying, to give them credit.

• Revoke signing keys for compromised
applications.

• Ohh, that’s right, trusted has nothing to do with trustworthy

• And I’m not sure that revocation is well supported.

Faculty of Computer Science

Privacy and Security Lab

© 2005-2006 by John McHugh

Could we be proactive? - 3

• Can we be a little less nerdy!

• Surely, we could put enough effort into clean and
coherent designs for management interfaces so
that the average user could manage their own

system.

• The typical computer owner / user is no longer a
technician or technologist. It is the responsibility

of software designers and vendors to recognize
this and provide systems that improve their

chances of survival.

• Safer default configurations.

• Tutorial interfaces.

16

Faculty of Computer Science

Privacy and Security Lab

© 2005-2006 by John McHugh

Could we be proactive? - 4

• Exploit developers are viewed as heroes in some

circles.

• I want a hacker’s hall of shame.

• With heads on pikes.

• Programmers who commit sins such as the creation
of buffer overflows need re-education at best

• Cut off their coding hand?

Faculty of Computer Science

Privacy and Security Lab

© 2005-2006 by John McHugh

If we have to react

• Lets try to do it from a point of better information.

• Comprehensive network observation (including,
especially unused addresses)

• Unbiased analyses (let the data talk)

• Visualizations that provide insight.

• I’m going to conclude with a few more pictures:

17

Faculty of Computer Science

Privacy and Security Lab

© 2005-2006 by John McHugh

One week on a /16

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

4500000

11-Jan 12-Jan 13-Jan 14-Jan 15-Jan 16-Jan 17-Jan 18-Jan

Date and Time

H
o

u
rl

y
 F

lo
w

 F
il
e
 S

iz
e

Inbound Hits

Inbound misses

Faculty of Computer Science

Privacy and Security Lab

© 2005-2006 by John McHugh

NNN.OOO.x.x - Host activity

0

20

40

60

80

100

120

140

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Date in April 2004

A
c
ti

v
e
 H

o
s
ts

NNN.OOO.012.x

NNN.OOO.013.x

NNN.OOO.014.x

NNN.OOO.015.x

NNN.OOO.016.x

12 others 1 host ea

18

Faculty of Computer Science

Privacy and Security Lab

© 2005-2006 by John McHugh

Mail Server?

Faculty of Computer Science

Privacy and Security Lab

© 2005-2006 by John McHugh

Web Server

19

Faculty of Computer Science

Privacy and Security Lab

© 2005-2006 by John McHugh

Web Server

Faculty of Computer Science

Privacy and Security Lab

© 2005-2006 by John McHugh

Scanner

20

Faculty of Computer Science

Privacy and Security Lab

© 2005-2006 by John McHugh

Thank You

• I’ll be around for the rest of the conference.

• You can reach me as mchugh at cs.dal.ca

• Ideas for possible collaborations are welcome

