Using Labeling to Prevent Cross-Service Attacks Against Smart Phones

Collin Mulliner, Giovanni Vigna University of California, Santa Barbara David Dagon, Wenke Lee Georgia Institute of Technology, Atlanta

Smart Phones

- Combination of PDAs and mobile phones
- Integrate multiple wireless networking technologies
 - Wireless LAN, Bluetooth, GSM/CDMA/UMTS, IrDA
- Support installation of 3rd-party software
 - For example: VoIP clients, FTP servers, games

Contributions

- Devised Cross-Service Attacks, a new class of attacks against smart phones
- Created a proof-of-concept cross-service attack
- Developed a protection mechanism to prevent crossservice attacks

Introduction to Cross-Service Attacks

- Smart phones integrate different network services
 - GSM, Wireless LAN, Bluetooth, IrDA
- Integration is often done without taking into account the specific characteristics of the different services
 - For example: free vs. pay-per-use services
- An attacker can leverage the interaction between different types of network services
 - For example: gain access to pay-per-use services by exploiting free services

Service Protection

- Local and personal area wireless networking services
 - Devices do not offer comprehensive protection mechanisms
 - Many smart phone applications are developed without security in mind
- Mobile phone services
 - Service providers protect their customers
 - For example: firewalling

Crossing Service Boundaries

- Attack device using local area wireless networking service
 - Exploit insecure configuration of local area wireless networks and networked applications
 - Take control of the device
- Access mobile phone service (cross service boundaries)
 - Initiate phone calls or send text messages
 - Exploit pay-per-use services to defraud user
 - For example: 900/0190 calls and/or premium rate text messages

Attack Scenario

- Coffee shop with free wireless Internet access
 - Attacker looks for smart phones joining the wireless network
 - Exploits vulnerable device and causes financial damage

A Proof-of-Concept Attack

- Targets PocketPC-based smart phones
 - PocketPC is the WindowsCE version for smart phones
- Performs buffer overflow/stack-smashing attack against an FTP server
 - Shellcode accesses mobile phone interface and initiates call
- Overcomes complications due to WindowsCE architecture
 - Need to load special DLL for accessing the phone interface
 - Need to guess correct return address

Cross-Service Exploit

Preventing Cross-Service Attacks

- Stack protection (for preventing stack-smashing attacks)
 - Not available or rarely used on mobile devices
 - Does not prevent exploitation of application-logic errors
 - Does not protect against Trojan horses
- Other protection mechanisms needed
 - Detect and prevent attempts to cross service boundaries

Preventing Cross-Service Attacks Through Labeling

- Developed a security mechanism that tracks and controls network interface access using labeling
 - A label indicates contact with a specific network interface
 - A user-defined policy defines which labels should prevent access to a specific network interface
- Labels are assigned to processes as they access network interfaces
- Labels are transferred between processes and files on access or execution

Tracking and Controlling Network Access

- Developed a kernel-level reference monitor
 - Intercepts security-critical system calls
 - Assigns labels to processes and transfers them between processes and resources
 - Enforces access control policies
- Intercepted security-critical system calls:
 - socket(AF_INET, ...)

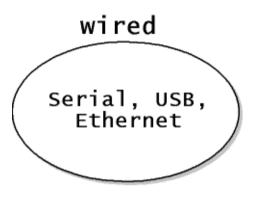
IP-based network access

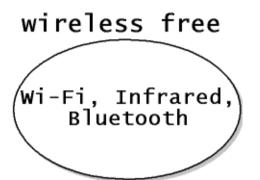
open(...)

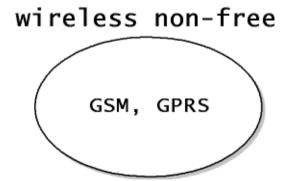
File and device access

execve(...)

Program execution




Labeling Processes and Files


- Interface access
 - The process' labels are compared with the access control policy
 - Access is permitted or denied
 - The process is labeled with label of accessed interface
- Resource/file write access and process creation
 - Files and processes inherit labels of creating process
- Resource/file read access and application execution
 - Process inherits labels from accessed and executed file

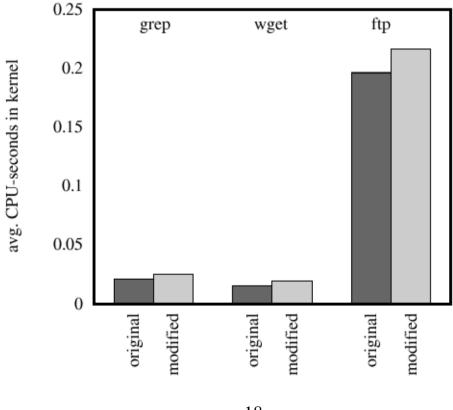
Label Groups

Access Control and Exception Policy

- Access control rules
 - access <interface> <deny/ask> <label(s)>
 - Example: access wireless_nonfree deny wireless_free
- Exception rules
 - exception <path> <notlabel/notinherit/notpass>
 - Example: exception /Windows/activesync.exe notinherit

Preventing the Attack

- The FTP server process is labeled on calling socket(...)
 - Label is set for: wireless_free
- The exploit tries to access the phone interface
 - For example: open("/dev/ttyS0", ...)
- The reference monitor is invoked
 - Process labels are compared with policy rules
 - The monitor denies access, open(...) returns EACCESS


Evaluation

- Our labeling system effectively prevents attacks that cross service boundaries
- System and policy language are light-weight
 - Appropriate for mobile devices
- Exception rules have to be used carefully
 - Otherwise the labeling system can be bypassed

Overhead

- Reference implementation for Familiar Linux
 - Overhead between 10% and 26%

Conclusions

- Smart phones present new challenges for security designers and analysts
 - Especially the integration of multiple networking services are problematic
- We introduced a new type of attack
- We demonstrated the possible impact of a cross-service vulnerability
- We designed and implemented a solution based on resource labeling

Future Work

- Extend the policy language to support more complex labeling policies
- Improve the implementation of the reference monitor to further reduce overhead

Questions?

Thank you for your attention!

