Detecting Unknown Network Attacks using Language Models

Konrad Rieck and Pavel Laskov DIMVA 2006, July 13/14 Berlin, Germany

Fraunhofer

Institut Rechnerarchitektur und Softwaretechnik How to distinguish normal from unknown?

```
GET /dimva06/john/martin.html
Accept: */*
Accept-Language: en
Host: www
Connection: keep-alive
```

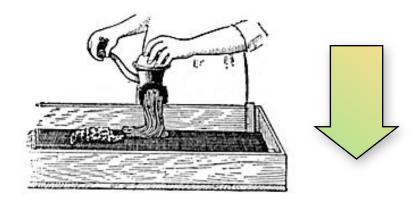
```
GET /scripts/..%%35c../..%%35c../..%%35c../..%%35c
%%35c../winnt/system32/cmd.exe?/c+dir+c:\ HTTP/1.0
Host: www
Connection: close
```

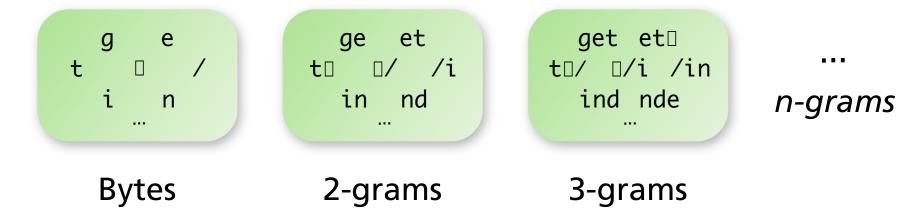
- Cast intrusion detection into linguistic problem
 - Utilization of machine learning instruments

N-gram models

Connection payload

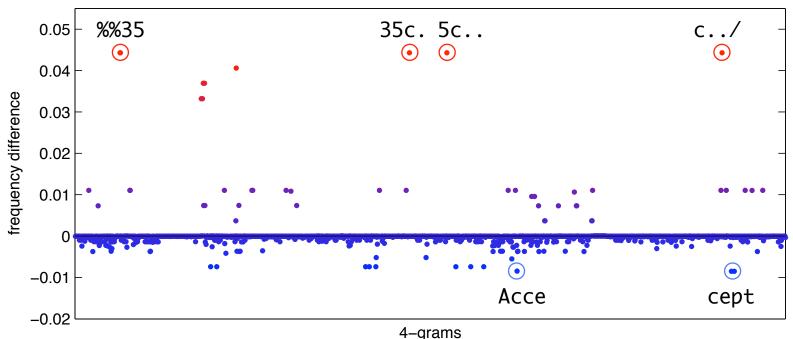
getD/index.html



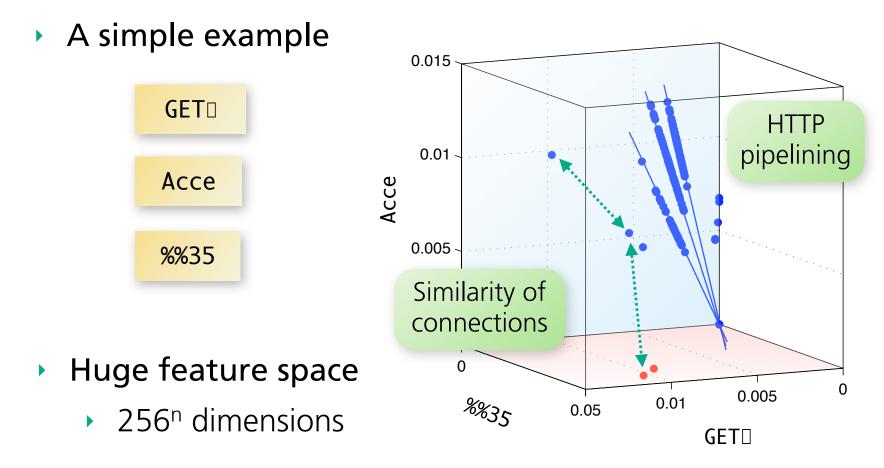


GET /scripts/..%35c../..%35c../..%35c../..%35c %35c../winnt/system32/cmd.exe?/c+dir+c:\ HTTP/1.0

Frequency differences to 4-grams in normal HTTP



Nimda IIS attack and HTTP traffic comparison



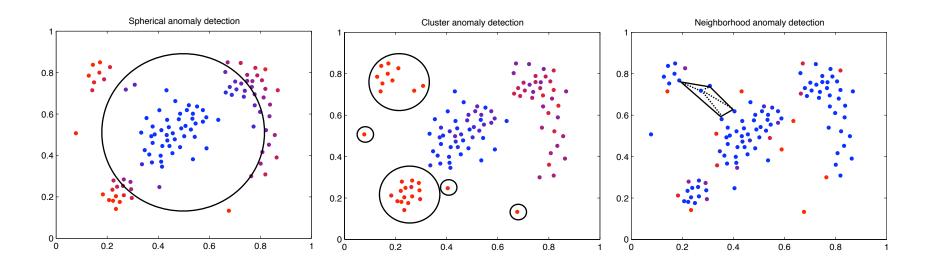
Geometric representation of connections

- Distances, kernel functions, ... e.g.
 - Manhattan $\sum_{w \in L} |\phi_w(x) \phi_w(y)|$ Minkowski $\sqrt[k]{\sum_{w \in L} |\phi_w(x) \phi_w(y)|^k}$ x, y \in {0, ..., 255}*, L = {0, ..., 255}ⁿ

 $\phi_w(x) =$ frequency of w in sequence x

- Efficient computation not trivial
 - Sparse representation of n-gram frequencies
 - Linear-time algorithms (cf. DIMVA 2006 paper)

- Detection of outliers in feature space
 - Exploration of geometry between connections
 - No training phase no labels required
- Anomaly detection (AD) methods
 - e.g. Spherical AD, Cluster AD, Neighborhood AD



- Open questions
 - Do n-gram models capture semantics sufficient for detection of unknown attacks?
 - Can anomaly detection reliably operate at low false-positive rates?
 - How does this approach compare to classical signature-based intrusion detection?

PESIM 2005 data set

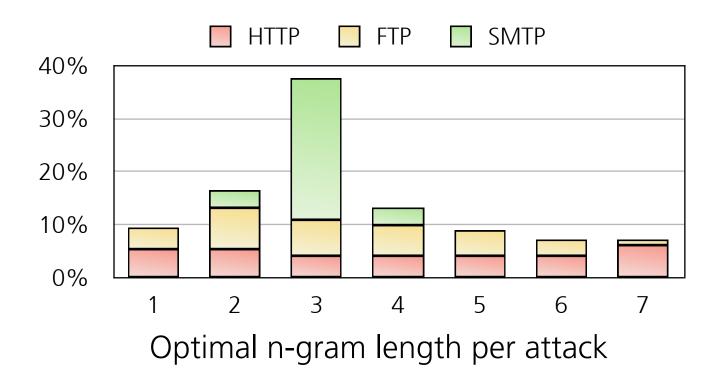
- Real network traffic to servers at our laboratory
 - *HTTP* Reverse proxies of web sites
 - *FTP* Local file sharing, e.g. photos, media
 - *SMTP* Retransmission flavored with spam
- Attacks injected by pentest expert (e.g. metasploit)
- DARPA 1999 data set as reference
- Statistical preprocessing
 - Extraction of 30 independent samples comprising 1000 incoming connection payloads per protocol

- Comparison of anomaly detection methods
 - Criteria: AUC_{0.01} Area under ROC within [0, 0.01]
 - Results averaged over n-gram lengths [1,7]

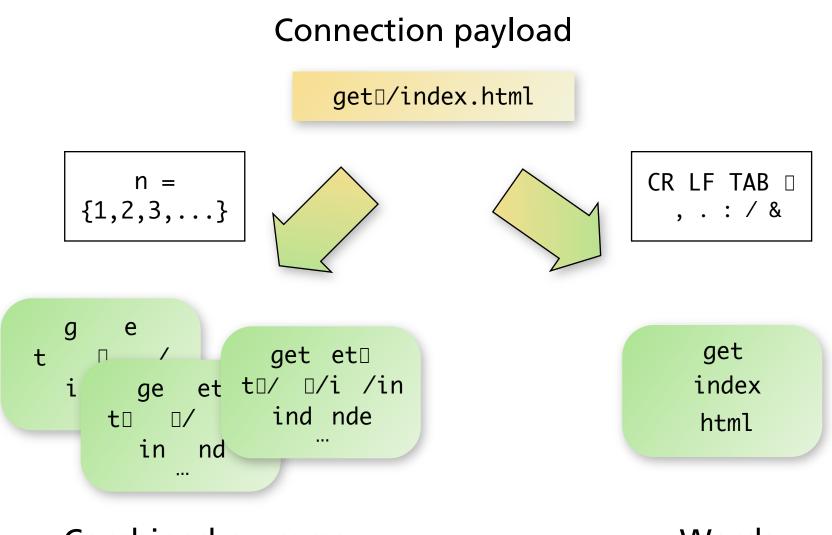
Protocol	Best method	AUC _{0.01}
HTTP	Spherical (qsSVM)	0.781
FTP	Neighborhood <i>(Zeta)</i>	0.746
SMTP	Cluster (Single-linkage)	0.756

Bottom line: Different protocols require different anomaly detection methods

How does one choose the optimal n-gram length?



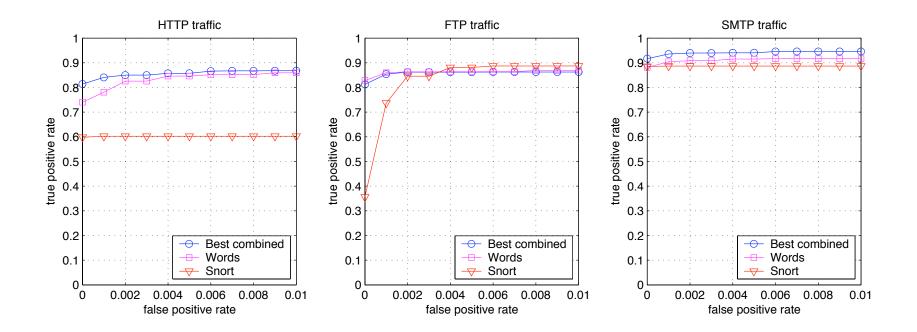
No single n fits all: variable-length models required



Combined n-grams

Words

- Language models vs. Snort
 - Combined n-gram (1-7) and word models
 - Snort: Version 2.4.2 with default rules



Language models for intrusion detection

- Characteristic patterns in normal traffic and attacks
- Unsupervised nomaly detection with high accuracy
- Detection of ~80% unknown network attacks
- Future perspective
 - From in vitro to in vivo: *real-time application*
 - Language models as prototypes for signatures?

Approaches

- Red herring
 Denial-of-service with random traffic patterns
- Creeping poisoning
 Careful subversion of normal traffic model
- Mimicry attacks
 Adaption of attacks to mimicry normal traffic
- Conclusions
 - (1) Worse for signature-based intrusion detection
 - (2,3) Requires profound insider knowlegde

