TCPtransform (Offline version of TCPopera)

Seung-Sun (Gary) Hong, S. Felix Wu

Security Laboratory Computer Science Department University of California - Davis

Outlines

- Motivations
- Related work
- TCPtransform/TCPopera development
- Design & Implementation
- Validation tests
 - TCPtransform
 - FTP traffic reproduction
 - TCPopera
 - Interactive traffic reproduction, IPS testing
- Conclusions & Future directions

Motivations

- Industrial request
 - Having test traffic for security products
 - In-line device testing, e.g. IPS, firewall, router
- Internal request
 - Replaying traffic captured from MINOS honeypot on DETER
 - UCDavis is one of major participants in DETER project which is a large-scale network emulation environment for security protocol/product testing.

Motivations

- Limitation of conventional trace replay tools
 - Not capable of stateful emulation of TCP connections
 - Inconsistent data/control packets generation
 - E.g. generation of ghost packets
 - No good for in-line device testing such as IPS testing
- Live security test environments require
 - Realistic test traffic and packet contents
 - more interactive traffic replay approach

Related work

- Trace-based traffic replaying
 - Easy to implement and mimic system behaviors
 - Real traffic, sufficient diversities
 - Hard to adjust trace for various test conditions
 - Assuming the test condition is the same as the time at the trace was recorded
- Analytic-model based traffic generation
 - Easy to control/adjust traffic generation models
 - Statistically identical to traffic models.
 - Hard to support trace contents for security test environments

Trace-based traffic replaying

- TCPreplay/Flowreplay
 - Static trace replaying mainly for NIDS testing
 - Flowreplay is a TCP client emulator
- TCPivo
 - High-performance trace replay tool
 - I/O management, Timer accuracy, Null-padding payload

Monkey

- HTTP emulator for a Google server
- Monkey See for TCP tracing, Monkey do for TCP replaying
- Tomahawk
 - A tool for testing in-line blocking capabilities (IPS)
 - Operable across layer-2 connection.

TCPtransform/TCPopera development

Milestone of TCPopera development

Design & Implementation

- Property-oriented trace replaying
 - Extract traffic parameters from Input trace records through the reverse-engineering
 - Adjust traffic parameters according to test conditions
 - Feed new traffic parameters to input packet sequence

TCPtransform Components

TCPopera/TCPtransform Major Components

TCPtransform Components

- Flow Preprocess
 - Preparing IP flows
 - Extraction of TCP connection and IP flow parameters
 - RTT, transmission rate, packet loss rate, path MTU
 - Address remapping, ARP emulation
- IP Flow process
 - Creating a POSIX thread for each IP flow
 - TCP control block emulation
- Traffic Models
 - TCP parameters for the initiation of TCP control blocks
 - Gap-based packet loss model

TCPtransform Components (Cont'd)

- TCP Functions
 - Based on BSD4.4-Lite release (1994) TCP Reno
 - 8 TCP timers
 - Slow timer (500ms), Fast timer (200ms)
 - Timeout & Retransmission
 - RTT measurement
 - Fast Retransmit & Fast Recovery
 - Flow & Congestion Control
- Packet Injection/Packet Capturing
 - Libnet and Pcap
 - IP/TCP checksum recalculation if a packet is modified

TCPtransform Validation

FTP traffic reproduction

- Imitating a FTP connection to download a 8M file from 3 different public GNU servers
- Sampled over 10,000 FTP connections from each server

Name	Location	Host name (IP address)
Berlin	German	ftp.cs.tu.berling.de (130.149.17.12)
NCTU	Taiwan	ftp.nctu.deu.tw (140.113.27.181)
Charlmers	Sweden	ftp.chl.charlmers.se (129.16.214.70)

- Test setup
 - Collect an input tcpdump file from a local FTP server.
 - To remove any noise, we directly connect the client machine to the FTP server.
 - TCPtransfrom reproduced FTP connections for each server

TCPtransform Validation

Gab-based Packet Loss Model

N: Maximum number of packets in Packet loss period, n: number of packets in Packet loss period

Q distribution

- χ²-like test to compare the similarity between longterm and short-term profile.
- Partition sample space S into *bin_i*.
- *N* : Total number of events
- Y_i : Number of event occurrences for bin_i .
- P_i : Probability of event occurrences for $bin_i(Y_i/N)$
- Y'_i and N' for short-term profile.

$$Q = \sum_{i=1}^{k} \frac{\left(Y_{i}^{'} - N^{'} \times p_{i}\right)^{2}}{N \times p_{i}}$$

Test conditions

4 traffic variables

Server		Berlin	NCTU	Charlmers
Packet loss rate		0.0003	0.0002	0.0001
Loss burst size	Shape	1.1	1.2	1.1
(Pareto)	Min	1	1	1
Packet burst size	Shape	1.1	1.1	1.1
(Pareto)	Min	20	20	20
RTT	Avg.	152	260	163
(msec)	Stdev	9.161	14.881	0.977

- TCPopera nodes
 - 2 GHz Intel Pentium 4, 768MB RAM
 - Internal: Redhat 8 (2.4.18), External: Redhat 9 (2.4.20)
- Network Emulator
 - 455MHz Pentium II Celeron, 256MB RAM
 - FreeBSD5.0, IPFW (with Dummynet)
- Snort 2.3
 - 3.2 GHz Intel Pentium 4 Processor, 512MB
 - Slackware 10.0 (2.4.26)
 - All Snort rules are enabled including the Stream4 analysis

TCPopera traffic reproduction

DARPA IDEVAL99 (first 12 hours of 03/29/99)

Category		Input trace	TCPopera		
			No loss	1% loss	
IP	Packets	1,502,584	1,552,882	1,531,388	
	Bytes	234,434,486	234,991,187	232,145,926	
ТСР	Packets	1,225,905	1,276,195	1,254,762	
	Bytes	194,927,209	195,483,762	192,647,088	
UDP	Packets	276,286	276,294	276,234	
	Bytes	39,474,602	39,495,286	39,466,797	
ICMD	Packets	393	393	392	
ICMP	Bytes	32,675	32,139	32,041	
TCP connections replayed		18,138	18,138	18,043	
TCP connections completed		14,974	14,971	14,796	

TCPopera traffic reproduction

Traffic volume comparison (every minute)

TCPopera validation (Snort Evaluation)

- ITRI Dataset
 - Collected for 30 minutes from a host within 140.96.114.0/24 segment in Taiwan
 - Major applications: HTTP, P2P (eDonkey), FTP
- Evaluation results

	No. of alerts				
Signature	Input trace	TCPopera			
		No-loss	1% loss	3% loss	
ICMP Destination/Port Unreachable	5	5	5	5	
ICMP Destination/Host Unreachable	2	2	2	2	
ICMP Destination Unreachable	1	1	1	1	
Fragmentation needed but DF bit is set					
P2P eDonkey Transfer	3	3	3	3	
(stream4) Possible retransmission detection	38	212	200	181	
(stream4) WINDOW violation detection	488	3	1	4	
Total	537	226	212	196	

Snort Evaluation – stream4 analysis

- Possible retransmission detection
 - Detecting an attempt to packet replaying attack
 - TCPopera's delayed ACKs confused the stream4 re-assembler.
- WINDOW violation detection
 - Detecting an attempt to write the outside of the receiver's window.
 - Mishandling of incomplete TCP connections.
 - Mistakenly assume the connection is established.
 - Strict rules on handling RST segments.
 - No resetting TCP connection, instead update the window size an RST segment is carrying.

Conclusions

- TCPopera does Interactive trace replaying with a stateful emulation of TCP connections.
- Initial evaluation showed a positive sign in the usefulness of TCPopera.
- Providing more methodologies for the security product evaluation.
- Deployable in a large-scale emulation environment like DETER.
- TCPopera is an on-going project.

Future directions

- Next TCPopera development phase
 - Porting TCPopera into DETER environment.
 - More in-line devices evaluation such as IPS.
 - Adding more evasive techniques for IPS testing
 - Supporting more application-specific interconnection dependency models
 - Adding more TCP/UDP traffic models
 - Adding a centralized TCPopera GUI to control multiple TCPopera nodes.

Thanks & Questions

Many thanks for paying attention to the talk.Any question