
TCPtransform
(Offline version of TCPopera)

Seung-Sun (Gary) Hong, S. Felix Wu

Security Laboratory

Computer Science Department

University of California - Davis

Outlines

� Motivations

� Related work

� TCPtransform/TCPopera development

� Design & Implementation

� Validation tests
� TCPtransform

� FTP traffic reproduction

� TCPopera
� Interactive traffic reproduction, IPS testing

� Conclusions & Future directions

Motivations

� Industrial request

� Having test traffic for security products

� In-line device testing, e.g. IPS, firewall, router

� Internal request

� Replaying traffic captured from MINOS honeypot
on DETER

� UCDavis is one of major participants in DETER
project which is a large-scale network emulation
environment for security protocol/product testing.

Motivations

� Limitation of conventional trace replay tools

� Not capable of stateful emulation of TCP
connections

� Inconsistent data/control packets generation

� E.g. generation of ghost packets

� No good for in-line device testing such as IPS
testing

� Live security test environments require

� Realistic test traffic and packet contents

� more interactive traffic replay approach

Related work

� Trace-based traffic replaying
� Easy to implement and mimic system behaviors

� Real traffic, sufficient diversities

� Hard to adjust trace for various test conditions
� Assuming the test condition is the same as the time at
the trace was recorded

� Analytic-model based traffic generation
� Easy to control/adjust traffic generation models

� Statistically identical to traffic models.

� Hard to support trace contents for security test
environments

Trace-based traffic replaying
� TCPreplay/Flowreplay

� Static trace replaying mainly for NIDS testing

� Flowreplay is a TCP client emulator

� TCPivo
� High-performance trace replay tool

� I/O management, Timer accuracy, Null-padding payload

� Monkey
� HTTP emulator for a Google server

� Monkey See for TCP tracing, Monkey do for TCP replaying

� Tomahawk
� A tool for testing in-line blocking capabilities (IPS)

� Operable across layer-2 connection.

TCPtransform/TCPopera development

� Milestone of TCPopera development

Time

06/0403/04 09/04 01/05 04/05 09/05 12/05

Design 1st development phase Evaluation 2nd development phase

Output
TCPtransform TCPopera

DIMVA’05 RAID’05

Details Requirements,
Architecture

Implementation of
Major Components

Reproductivity
Snort testing

Inter-connection
dependency models,
DETER deployment

Design & Implementation

� Property-oriented trace replaying

� Extract traffic parameters from Input trace records through
the reverse-engineering

� Adjust traffic parameters according to test conditions

� Feed new traffic parameters to input packet sequence

Input
TCPdump file

Traffic
Parameters

Packet
Processing

Packet
Sequence

Traffic
Configuration

Output
TCPdump file

Event

F
e
e
d
b
a
c k

Traffic Property Engine

TCPtransform Components

� TCPopera/TCPtransform Major Components

Traffic
Models

TCP
Functions

Flow
Preprocess

IP Flow
Process

Packet
Injection

Packet
Capturing

TCPopera
Control

TCPopera
Timer

C
o
n
f i
g
u
ra
t i
o
n

F
i le
s

Physical link

TCPopera
Components

TCPtransform components

TCPtransform Components

� Flow Preprocess

� Preparing IP flows

� Extraction of TCP connection and IP flow parameters

� RTT, transmission rate, packet loss rate, path MTU

� Address remapping, ARP emulation

� IP Flow process

� Creating a POSIX thread for each IP flow

� TCP control block emulation

� Traffic Models

� TCP parameters for the initiation of TCP control blocks

� Gap-based packet loss model

TCPtransform Components (Cont’d)

� TCP Functions

� Based on BSD4.4-Lite release (1994) - TCP Reno

� 8 TCP timers

� Slow timer (500ms), Fast timer (200ms)

� Timeout & Retransmission

� RTT measurement

� Fast Retransmit & Fast Recovery

� Flow & Congestion Control

� Packet Injection/Packet Capturing

� Libnet and Pcap

� IP/TCP checksum recalculation if a packet is modified

TCPtransform Validation
� FTP traffic reproduction

� Imitating a FTP connection to download a 8M file from 3
different public GNU servers

� Sampled over 10,000 FTP connections from each server

� Test setup
� Collect an input tcpdump file from a local FTP server.

� To remove any noise, we directly connect the client machine to
the FTP server.

� TCPtransfrom reproduced FTP connections for each server

ftp.chl.charlmers.se (129.16.214.70)SwedenCharlmers

ftp.nctu.deu.tw (140.113.27.181)TaiwanNCTU

ftp.cs.tu.berling.de (130.149.17.12)GermanBerlin

Host name (IP address)LocationName

TCPtransform Validation

� Gab-based Packet Loss Model

State 1
Packet received
successfully

State 2
Packet lost
Within a burst

State 3
Packet received
Within a burst

p11 p22 p33
p23

p32

If n > N

p12

If n > N

Gap Period Packet Loss Period

N: Maximum number of packets in Packet loss period,
n: number of packets in Packet loss period

Q distribution

� χ2-like test to compare the similarity between long-
term and short-term profile.

� Partition sample space S into bini.

� N : Total number of events

� Yi :Number of event occurrences for bini.

� Pi : Probability of event occurrences for bini (Yi /N)

� Yi’ and N’ for short-term profile.

()
∑
= ×

×−
=

k

i i

ii

pN

pNY
Q

1

2
''

Test conditions

� 4 traffic variables

163260152Avg.

202020Min

1.11.21.1Shape

0.97714.8819.161Stdev

RTT

(msec)

1.11.11.1ShapePacket burst size

(Pareto)

111Min

Loss burst size

(Pareto)

0.00010.00020.0003Packet loss rate

CharlmersNCTUBerlinServer

Test results

� NPR (Number of Packet Reordering)
Berlin, German NCTU, Taiwan Charlmers, Sweden

Test results (cont’d)
� Session Duration

Berlin, German NCTU, Taiwan Charlmer, Sweden

TCPopera Validation

� Test setup

LAN

External
TCPopera node

Dummynet

Internal
TCPopera node

Snort (stream4)

BSD Firewall (ipfw)

� TCPopera nodes

� 2 GHz Intel Pentium 4, 768MB RAM

� Internal: Redhat 8 (2.4.18), External: Redhat 9 (2.4.20)

� Network Emulator

� 455MHz Pentium II Celeron, 256MB RAM

� FreeBSD5.0, IPFW (with Dummynet)

� Snort 2.3

� 3.2 GHz Intel Pentium 4 Processor, 512MB

� Slackware 10.0 (2.4.26)

� All Snort rules are enabled including the Stream4 analysis

TCPopera traffic reproduction

Bytes

Packets

Bytes

Packets

Bytes

Packets

Bytes

Packets

14,79614,97114,974TCP connections completed

18,04318,13818,138TCP connections replayed

32,04132,13932,675

392393393
ICMP

39,466,79739,495,28639,474,602

276,234276,294276,286
UDP

192,647,088195,483,762194,927,209

1,254,7621,276,1951,225,905
TCP

232,145,926234,991,187234,434,486

1,531,3881,552,8821,502,584
IP

1% lossNo loss

TCPopera
Input traceCategory

� DARPA IDEVAL99 (first 12 hours of 03/29/99)

TCPopera traffic reproduction

� Traffic volume comparison (every minute)

IP Bytes

TCP Bytes

TCPopera validation (Snort Evaluation)

� ITRI Dataset
� Collected for 30 minutes from a host within
140.96.114.0/24 segment in Taiwan

� Major applications: HTTP, P2P (eDonkey), FTP

� Evaluation results

18120021238(stream4) Possible retransmission detection

196212226537Total

413488(stream4) WINDOW violation detection

3333P2P eDonkey Transfer

1111
ICMP Destination Unreachable

Fragmentation needed but DF bit is set

2222ICMP Destination/Host Unreachable

5555ICMP Destination/Port Unreachable

3% loss1% lossNo-loss

TCPoperaInput
trace

No. of alerts

Signature

Snort Evaluation – stream4 analysis

� Possible retransmission detection
� Detecting an attempt to packet replaying attack

� TCPopera’s delayed ACKs confused the stream4
re-assembler.

� WINDOW violation detection
� Detecting an attempt to write the outside of the
receiver’s window.

� Mishandling of incomplete TCP connections.
� Mistakenly assume the connection is established.

� Strict rules on handling RST segments.
� No resetting TCP connection, instead update the window
size an RST segment is carrying.

Conclusions

� TCPopera does Interactive trace replaying
with a stateful emulation of TCP connections.

� Initial evaluation showed a positive sign in
the usefulness of TCPopera.

� Providing more methodologies for the
security product evaluation.

� Deployable in a large-scale emulation
environment like DETER.

� TCPopera is an on-going project.

Future directions

� Next TCPopera development phase

� Porting TCPopera into DETER environment.

� More in-line devices evaluation such as IPS.

� Adding more evasive techniques for IPS testing

� Supporting more application-specific inter-
connection dependency models

� Adding more TCP/UDP traffic models

� Adding a centralized TCPopera GUI to control
multiple TCPopera nodes.

Thanks & Questions

� Many thanks for paying attention to the talk.

� Any question

	TCPtransform�(Offline version of TCPopera)
	Outlines
	Motivations
	Motivations
	Related work
	Trace-based traffic replaying
	TCPtransform/TCPopera development
	Design & Implementation
	TCPtransform Components
	TCPtransform Components
	TCPtransform Components (Cont™d)
	TCPtransform Validation
	TCPtransform Validation
	Q distribution
	Test conditions
	Test results
	Test results (cont™d)
	TCPopera Validation
	TCPopera traffic reproduction
	TCPopera traffic reproduction
	TCPopera validation (Snort Evaluation)
	Snort Evaluation Œ stream4 analysis
	Conclusions
	Future directions
	Thanks & Questions

