METAL

A tool for extracting attack manifestations

Ulf Larson, Emilie Lundin-Barse, Erland Jonsson
Computer security group
Dept. of Computer Science and Engineering
Chalmers University of Technology, Sweden

DIMVA July 7th 2005, Vienna, Austria
Presentation outline

- **Introduction**
- The research problem and our solution
- Manifestation extraction framework
- The METAL tool
 - Overview, components, classification, manifestation types, output data
- **Results**
- **Conclusions**
The research problem

Q: Given a set of log data, how do we discriminate the items that were caused by an attack from benign items?
Our solution

- Lundin-Barse proposed an 8 step Framework for finding differences, or manifestations
- Manifestations were extracted by comparing logs captured during normal operation with logs captured during an attack
- Manual comparison was used

Manual comparison was used...
But... aren’t logs large? And don’t they contain a lot of events caused by a lot of processes?
The research problem, redefined

Q: Given a set of log data, how do we **efficiently** discriminate the items that were caused by an attack from benign items?
Our solution, redefined

- We developed a tool, METAL, that automatically finds and extracts the differences.
- We use METAL for the time consuming part of framework.
Manifestation extraction

- Idea based on 8 step novel framework proposed by Lundin-Barse
 - Step 1-4: Identify attack, run attack, run corresponding normal behavior
 - Step 5: Manually compare logs to extract relevant differences
 - Step 6-8: Classify attacks and create log data requirements from observed differences

- METAL automates time consuming 5th step
 - Time consuming process to perform manually
 - Easy to miss or skip items due when manually analyzing the logs.

- Log source used is a system call logging tool called syscalltracker
The METAL tool: overview

- **Input data**
 - Normal log
 - Attack log
 - Sanitising rules
- **Action components**
 - Preprocessor
 - Sanitiser
 - Process matcher
 - Extractor
- **Output data**
 - Attack reports
 - Attack overview (relationship tree)
The METAL tool (2): components

Preprocessor
- Input data: Normal Log & Attack Log
- Output data: One file for each process in input logs divided in A and N

Sanitiser
- Input data: One file for each process
- Rules for dynamic and static sanitising of the logs
- Output data: One file for each process with natural differences removed

Process matcher
- Input data: One file for each process in input logs
- Output data: File with score for how well processes were matched
 - High score: bad match, low: good

Extractor
- Input data: Scorefile
- Output data: Attack reports containing differences for processes that are changed
The METAL tool (3): classification

- Processes are classified depending on process matcher equality value
 - Value between 0 and 1, denotes number of sequences of certain length that matched in comp.
 - Value calculated by using percentage of equal sequences of length 6, like in “A sense for self”

- 4 classes:
 - No differences -> equal
 - Small differences -> changed
 - Large differences -> added or removed
 - Distinction between small and large depends on limit value

<table>
<thead>
<tr>
<th>Removed</th>
<th>Added</th>
<th>Equal</th>
<th>Changed</th>
</tr>
</thead>
</table>

- Removed
- Added
- Equal
- Changed
The METAL tool (4): types

- Metal extracts 5 different types of manifestations from the logs
 - Syscall: Reveals alternate program flow
 - Example: execve call to launch shell
 - Seq: Reveals alternate program flow
 - Example: adding write call before read of config file.
 - Args: Reveals use of resources, attack strings
 - Unexpected files, exploit strings
 - Rets: Reveals success of unusual operations
 - Return value of setuid or getuid calls
 - Diff: Reveals repetitions
 - Perfectly normal sequence, only repeated
The METAL tool (5): output data

- Attack overview and manifestation reports
 - The relationship between the processes are shown in the attack overview
 - For all processes that are considered as slightly changed (C), a manifestation report is created

---__--__--__--__--__--__--__--__--__--__--__--__--__--__--__--__--__---

REPORT GENERATED FOR MATCH OF SMALL CHANGES

Process from normal use of system: 3214_tcpdump
Process from attack on system: 2929_tcpdump

The used sequencelength for filtering is: 6

Unique system calls from [attack] 2929_tcpdump
- 11_execve

Unique minimal foreign sequences in [attack] 2929_tcpdump
- ['11_execve']

Unique arguments occurring in [attack] 2929_tcpdump
- Syscall: 102_connect has mismatch on pos 2 for arg sockaddr{1, bffff65e}
- Unique diff output from running 'diff' command

> ["tcpdump"]: 11_execve("/bin/sh", CLEAN, CLEAN) (rule 11)
Results

- Manifestation extraction framework used on five attacks.
 - Three attacks previously tested manually was used as reference.
 - Comparison showed that METAL found all manifestations that were also found manually.

<table>
<thead>
<tr>
<th>Attack</th>
<th>Type</th>
<th>Processes in log</th>
<th>Changed</th>
<th>Manif. examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tcpdump</td>
<td>Buffer overflow</td>
<td>39</td>
<td>5</td>
<td>execve + args</td>
</tr>
<tr>
<td>Wu-ftpd</td>
<td>Format string</td>
<td>39</td>
<td>9</td>
<td>Execve + args</td>
</tr>
<tr>
<td>Openssh</td>
<td>Privilege checking</td>
<td>158</td>
<td>48</td>
<td>Setuid + args</td>
</tr>
<tr>
<td>Neptune</td>
<td>Dos</td>
<td>36</td>
<td>8</td>
<td>Repeated seucence</td>
</tr>
<tr>
<td>Traceroute</td>
<td>Buffer overflow</td>
<td>39</td>
<td>5</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 1: The results from using METAL to extract manifestations
Conclusions

- METAL significantly reduces the amount of work necessary for finding differences between log files.
- Fast and efficient identification of differences, but badly chosen reference behavior may impact matching.
- The process may be useful for signature writers and security officers. Can also be used to tune a log source in order to reduce the size of logs and identify similarities between attacks.