
METALMETAL

A tool for extracting attack A tool for extracting attack
manifestationsmanifestations

Ulf Larson, Emilie Lundin-Barse, Erland Jonsson
Computer security group
Dept. of Computer Science and Engineering
Chalmers University of Technology, Sweden

DIMVA July 7th 2005, Vienna, Austria

Presentation outlinePresentation outline

 IntroductionIntroduction
 The research problem and our solutionThe research problem and our solution
 Manifestation extraction frameworkManifestation extraction framework
 The METAL toolThe METAL tool

 Overview, components, classification, Overview, components, classification,
manifestation types, output datamanifestation types, output data

 ResultsResults
 ConclusionsConclusions

The research problemThe research problem

 Q: Given a set of log data, how do we Q: Given a set of log data, how do we
discriminate the items that were caused by an discriminate the items that were caused by an
attack from benign items?attack from benign items?

Our solutionOur solution

 Lundin-Barse proposed an 8 step Lundin-Barse proposed an 8 step FrameworkFramework for finding for finding
differences, or manifestationsdifferences, or manifestations

 Manifestations were extracted by comparing logsManifestations were extracted by comparing logs
captured during normal operation with logs captured captured during normal operation with logs captured
during an attackduring an attack

 Manual comparison was usedManual comparison was used

Manual comparison was used…
But… aren’t logs large? And don’t they contain a lot
of events caused by a lot of processes?

The research problem, redefinedThe research problem, redefined

 Q: Given a set of log data, how do we Q: Given a set of log data, how do we
efficientlyefficiently discriminate the items that were discriminate the items that were
caused by an attack from benign items?caused by an attack from benign items?

Our solution, redefinedOur solution, redefined

 We developed a tool, METAL, that We developed a tool, METAL, that
automatically finds and extracts the automatically finds and extracts the
differencesdifferences

 We use METAL for the time consuming We use METAL for the time consuming
part of frameworkpart of framework

Manifestation extractionManifestation extraction

 Idea based on 8 step novel framework proposed by Idea based on 8 step novel framework proposed by
Lundin-BarseLundin-Barse
 Step 1-4: Identify attack, run attack, run corresponding normal Step 1-4: Identify attack, run attack, run corresponding normal

behaviorbehavior
 Step 5: Manually compare logs to extract relevant differencesStep 5: Manually compare logs to extract relevant differences
 Step 6-8: Classifiy attacks and create log data requirements from Step 6-8: Classifiy attacks and create log data requirements from

observed differencesobserved differences

 METAL automates time consuming 5METAL automates time consuming 5thth step step
 Time consuming process to perform manuallyTime consuming process to perform manually
 Easy to miss or skip items due when manually analyzing the logs.Easy to miss or skip items due when manually analyzing the logs.

 Log source used is a system call logging tool called Log source used is a system call logging tool called
syscalltrackersyscalltracker

The METAL tool: overviewThe METAL tool: overview

 Input dataInput data
 Normal logNormal log
 Attack logAttack log
 Sanitising rulesSanitising rules

 Action componentsAction components
 PreprocessorPreprocessor
 SanitiserSanitiser
 Process matcherProcess matcher
 ExtractorExtractor

 Output dataOutput data
 Attack reportsAttack reports
 Attack overview Attack overview

(relationship tree)(relationship tree)

Sanitising rules

Extractor
Input data:
Scorefile

Output data:
Attack reports containing
differences for processes that are
changed

The METAL tool (2): componentsThe METAL tool (2): components

Preprocessor

Input data:
Normal Log & Attack Log

Output data:
One file for each process in
input logs divided in A and N

Pre
processor

Sanitiser

Sanitiser

Input data:
One file for each process
Rules for dynamic and static
sanitising of the logs

Output data:
One file for each process with
natural differences removed

Process matcher

Input data:
One file for each process in
input logs

Output data:
File with score for how well
processes were matched
High score: bad match, low: good

Process
Matcher

Extractor

The METAL tool (3): classificationThe METAL tool (3): classification
 Processes are classified depending on process Processes are classified depending on process

matcher matcher equality valueequality value
 Value between 0 and 1, denotes number of Value between 0 and 1, denotes number of

sequences of certain length that matched in comp.sequences of certain length that matched in comp.
 Value calculated by using percentage of equal Value calculated by using percentage of equal

sequences of length 6, like in “A sense for self”sequences of length 6, like in “A sense for self”
 4 classes:4 classes:

 No differences -> equalNo differences -> equal
 Small differences -> changedSmall differences -> changed
 Large differences -> added or removedLarge differences -> added or removed
 Distinction between small and large depends on Distinction between small and large depends on limitlimit

valuevalue

Removed Added Equal Changed

Removed Added Equal Changed

The METAL tool (4): typesThe METAL tool (4): types
 Metal extracts 5 different types of Metal extracts 5 different types of

manifestations from the logsmanifestations from the logs
 Syscall: Reveals alternate program flowSyscall: Reveals alternate program flow

 Example: execve call to launch shellExample: execve call to launch shell
 Seq: Reveals alternate program flowSeq: Reveals alternate program flow

 Example: adding write call before read of Example: adding write call before read of
config file.config file.

 Args: Reveals use of resources, attack stringsArgs: Reveals use of resources, attack strings
 Unexpected files, exploit stringsUnexpected files, exploit strings

 Rets: Reveals success of unusual operationsRets: Reveals success of unusual operations
 Return value of setuid or getuid callsReturn value of setuid or getuid calls

 Diff: Reveals repetitionsDiff: Reveals repetitions
 Perfectly normal sequence, only repeatedPerfectly normal sequence, only repeated

Extractor

Seq

Syscall

Args

Rets

Diff

Seq

Syscall

Args

Rets

Diff

The METAL tool (5): output dataThe METAL tool (5): output data
 Attack overview and manifestation reportsAttack overview and manifestation reports

 The relationship between the processes are shown in the attack overviewThe relationship between the processes are shown in the attack overview
 For all processes that are considered as slightly changed (), a For all processes that are considered as slightly changed (), a

manifestation report is createdmanifestation report is created

---__--__--__--__--__--__--__--__--__--__--__--__--__--__--__--__--__---
 REPORT GENERATED FOR MATCH OF SMALL CHANGES

Process from normal use of system: 3214_tcpdump
Process from attack on system: 2929_tcpdump
===
The used sequencelength for filtering is: 6
===
Unique system calls from [attack] 2929_tcpdump
11_execve
===
Unique minimal foreign sequences in [attack] 2929_tcpdump

['11_execve']
===
Unique arguments occurring in [attack] 2929_tcpdump

Syscall: 102_connect has mismatch on pos 2 for arg sockaddr{1, bffff65e}
===
Unique diff output from running 'diff’ command

> ["tcpdump"]: 11_execve("/bin/sh", CLEAN, CLEAN) (rule 11)

C

ResultsResults
 Manifestation extraction framework used on five attacks.Manifestation extraction framework used on five attacks.

 Three attacks previously tested manually was used as reference.Three attacks previously tested manually was used as reference.
 Comparison showed that METAL found all manifestations that were Comparison showed that METAL found all manifestations that were

also found manually.also found manually.

--553939Buffer Buffer
overflowoverflow

TracerouteTraceroute

Repeated Repeated
secuencesecuence

883636DosDosNeptuneNeptune

Setuid + Setuid +
argsargs

4848158158Privilege Privilege
checkingchecking

OpensshOpenssh

Execve + Execve +
argsargs

993939Format Format
stringstring

Wu-ftpdWu-ftpd

execve + execve +
argsargs

553939Buffer Buffer
overflowoverflow

TcpdumpTcpdump

Manif. Manif.
examplesexamples

ChangedChangedProcesses Processes
in login log

TypeTypeAttackAttack

Table 1: The results from using METAL to extract manifestations

ConclusionsConclusions

 METAL significantly reduces the amount of work METAL significantly reduces the amount of work
necessary for finding differences between log necessary for finding differences between log
files.files.

 Fast and efficient identification of differences, Fast and efficient identification of differences,
but badly chosen reference behavior may impact but badly chosen reference behavior may impact
matching matching

 The process may be useful for signature writers The process may be useful for signature writers
and security officers. Can also be used to tune a and security officers. Can also be used to tune a
log source in order to reduce the size of logs and log source in order to reduce the size of logs and
identify similarities between attacks.identify similarities between attacks.

