METAL

A tool for extracting attack
manifestations

UIf Larson, Emilie Lundin-Barse, Erland Jonsson
Computer security group

Dept. of Computer Science and Engineering
Chalmers University of Technology, Sweden

DIMVA July 7t 2005, Vienna, Austria

Presentation outline

Introduction
The research problem and our solution
Manifestation extraction framework

The METAL tool

= Overview, components, classification,
manifestation types, output data

Results
Conclusions

The research problem

= Q: Given a set of log data, how do we
discriminate the items that were caused by an
attack from benign items?

Our solution

® |undin-Barse proposed an 8 step Framework for finding
differences, or manifestations

= Manifestations were extracted by comparing logs
captured during normal operation with logs captured
during an attack

= Manual comparison was used

Manual comparison was used...

But... aren't logs large? And don't they contain a lot
of events caused by a lot of processes?

The research problem, redefined

= Q: Given a set of log data, how do we
efficiently discriminate the items that were
caused by an attack from benign items?

Our solution, redefined

We developed a tool, METAL, that

automatically finds and extracts the
differences

We use METAL for the time consuming
part of framework

Manifestation extraction

= [dea based on 8 step novel framework proposed by
Lundin-Barse

= Step 1-4: Identify attack, run attack, run corresponding normal
behavior

= Step 5: Manually compare logs to extract relevant differences

= Step 6-8: Classifiy attacks and create log data requirements from
observed differences

= METAL automates time consuming 5 step
= Time consuming process to perform manually
= Easy to miss or skip items due when manually analyzing the logs.

= |og source used is a system call logging tool called
syscalltracker

The METAL tool: overview

Sanitising rules

Pre- | Proce
processor match

er
-

* Input data
= Normal log og
= Attack log og
= Sanitising rules

= Action components
® Preprocessor
= Sanitiser
= Process matcher
= Extractor

= Qutput data

= Attack reports

= Attack overview
(relationship tree)

The METAL tool (2): components

Nenmal

log
Attack
Iog

—— — ——

=

Process
idenkfier

Preprocessor

Input data:
Normal Log & Attack Log

Output data:
One file for each process in
input logs divided in A and N

Process matcher

Input data:
One file for each process in
input logs

Output data:
File with score for how well
processes were matched

High score: bad match, low: good

Sanitiser

Input data:

One file for each process
Rules for dynamic and static
sanitising of the logs

Output data:
One file for each process with
natural differences removed

Extractor
Input data:
Scorefile

Output data:
Attack reports containing

differences for processes that are

changed

The METAL tool (3): classification

= o BB Processes are classified depending on process

i & matcher equality value

= Value between 0 and 1, denotes number of
sequences of certain length that matched in comp.

= Value calculated by using percentage of equal
sequences of length 6, like in “A sense for self”

4 classes:

No differences -> equal

Small differences -> changed

Large differences -> added or removed

Distinction between small and large depends on limit

value
S
W Changed

S

The METAL tool (4): types

Pr
mal

= Metal extracts 5 different types of
manifestations from the logs
= Syscall: Reveals alternate program flow
* Example: execve call to launch shell
= Seq: Reveals alternate program flow

= Example: adding write call before read of
config file.

= Args: Reveals use of resources, attack strings
® Unexpected files, exploit strings
= Rets: Reveals success of unusual operations
= Return value of setuid or getuid calls
Diff: Reveals repetitions
= Perfectly normal sequence, only repeated

The METAL tool (5): output data

= Attack overview and manifestation reports
= The relationship between the processes are shown in the attack overview
= For all processes that are considered as slightly changed (),

manifestation report is created

Simigesms 17 Renl [EnEEEEESs [EEag By

¥l E B695_gnome-smproxy
fvd C 411 _identd

720_ _panel
695_gnome-smpnoxy 73B_gen_util_applet
411_identd =« 2029 _tcpdump -= sh -= xtarm

2074 _xterm -> bash
2975_bash
2976_bash -> tput
439_ 2977_bash
3214 _tepdump 2078_bash -= tput
[3218_tepdump - 2979_bash -» sty
2980_bash
2981_bash == dircolors
2082_bash
2083_bash - grap
e, = 2984 _bash -= id
%l = 2068_tcpdump
B E 439 _crond
775 _bash

REPORT GENERATED FOR MATCH OF SMALL CHANGES
Process from normal use of system: 3214_tcpdump
Process from attack on system: 2929_tcpdump
The used se

Unique system calls from [attack] 2929_tcpdump
11_execve

Unique minimal foreign sequences in [attack] 2929_tcpdump
['11_execve']

Unique arguments occurring in [attack] 2929_tcpdump

Syscall: 102_connect has mismatch on pos 2 for arg sockaddr{1, bffff65e}

Unique diff output from running 'diff’ command

> ["tcpdump"]: 11_execve("/bin/sh", CLEAN, CLEAN) (rule 11)

Results

Manifestation extraction framework used on five attacks.
= Three attacks previously tested manually was used as reference.

= Comparison showed that METAL found all manifestations that were
also found manually.

Attack Type Processes Changed Manif.
in log examples
Tcpdump Buffer 1°) 5 execve +
overflow args
Wu-ftpd Format 39 9 Execve +
string args
Openssh Privilege 158 48 Setuid +
checking args
Neptune Dos 36 8 Repeated
secuence
Traceroute Buffer 39)
overflow

Table 1: The results from using METAL to extract manifestations

Conclusions

METAL significantly reduces the amount of work
necessary. for finding differences between log
files.

Fast and efficient identification of differences,
but badly chosen reference behavior may impact
matching

The process may be useful for signature writers

and security officers. Can also be used to tune a
log source in order to reduce the size of logs and
identify similarities between attacks.

