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Overview of the Problem, Context, and Solution

• A masquerade: a computer account is not used by
its normal user; this is an intruder

• The observable behavior of the legitimate user and
the intruder: executed programs (e.g. the
Schonlau datasets)

• Main observation: repeated sequences of
programs are often not directly typed by the user

• Generate a grammar to represent the legitimate
user and (shared) repeated sequences (the
Sequitur algorithm)

• Detecting masquerades based on the grammar
• Experimental results
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The Problem & Context

Problem
A (Unix) computer account is used by an intruder, not
its normal legitimate user; detect the intruder.

Context
The given behavioral data of the legitimate user:
sequences of executed programs.

For Unix: the accounting facility gives the executed
programs not the commands directly typed by the
user.

This is true for many other behavioral data.
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The (Matthias) Schonlau Datasets

Several researchers have used it to benchmark their
masquerade detection algorithm.

1. 70 users: 50 users as victims, 20 as intruders

2. 5000 commands for each legitimate user, used as
trainig data: automatically generate a (Sequitur)
grammar

3. 10000 commands, for each legitimate user, that
may be infected by blocks of 100 commands: used
to benchmark the detection algorithm
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Repeated Sequences

An essential aspect
If scripts are shared between users, there will be
common repeated sequences of executed commands in
their behavioral data.

Example
Let say getemail generates touch, cd, pemail.
The user types: getemail, cd, getemail, ls.
Its profile contains:
touch, cd, pemail, cd, touch, cd, pemail, ls.
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The (local) Profile of the User – A Grammar

These repeated sequences are nested. For example,
a script calling another script.

We should extract the nested structure of the repeated
sequences and the common repeated sequences
between users.

The Sequitur algorithm generates a context-free
grammar that detects most of the nested repetitions.

The grammar is generated offline based on a long

(e.g. 5000) sequence of commands from the legitimate

user.
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Sequitur Algorithm (1)

Starting with the main production S → λ and scanning
the string from left to right:

1. add the current command to the end of the
right-hand-side of S

2. if the last digram repeats on the right-hand-side of
a production, creates a new production for that
digram

3. use the new non-terminal instead of the digram:
replace the occurrences of the digram by the
non-terminal.
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Sequitur Algorithm (2)

Generation of Generation of

Grammar G1 Grammar G2

from from

dadabfbfeaeabgbg bcabcaca

Steps Steps

S → dada S → bcabc
S → AA S → AaA
A → da A → bc
S → AAbfbf S → AaAa
S → AABB S → BB
B → bf B → Aa
. . . . . .
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Sequitur Algorithm (3)

Generation of Generation of

Grammar G1 Grammar G2

from from

dadabfbfeaeabgbg bcabcaca

S → AABBCCDD S → BBC
A → da B → bC
B → bf C → ca
C → ea (deleted: A → bc)
D → bg
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Production Frequencies and Global Scripts

The user of the grammar is augmented with local and
global frequencies on each production.

Production Local Frequency: how many times its
expansion occurs in the training data.

Production Global Frequency: how many times its
expansion occurs in the other users training data.

A global data base of all productions from all users is
created: the global scripts.
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Classifying a Block of Commands – Detecting
Masquerades (1)

A block of commands is evaluated – if it falls below a
threshold (e.g. 30) it is classified as a masquerade.

A block is evaluated by iteratively breaking it into
segments:

Positive contribution Each segment matches the
expansion of a production of the user grammar.
Choose the production that gives the maximum
value (use e(p) next slide).

Negative contribution The left over segments, not
matching any production expansion, contribute
negatively.
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Positive contribution – Detecting Masquerades (2)

A production p is valued at:

e(p) = lp
fp

fp + Fp

k

(1)

where fp is the local frequency of production p, Fp its
global frequency, lp the length of its expansion, and k a
constant.

Notice that fp

fp+
Fp

k

≤ 1.

A good value for k can be found automatically based
on the training data. We got k = 7, for the Schonlau
datasets.
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Negative contribution – Detecting Masquerades
(3)

Each remaining segment of the block contributes a
negative value.

A global script appearing as a substring of an
unmatched segment contributes a value of −1
whereas each unseen command contributes a value
of −1.

Therefore, the global scripts reduce the negative
evaluation.

Reason: the user probably called a new script, not
each individual commands.
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Updating the Profile

After each testing block – classified as legitimate – the
user profile is updated with that block.

The updating applies the Sequitur algorithm on the 100
new commands to the currrent grammar.

There is no updating of the list of common (global)
scripts.
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Computational Cost

The execution time of Sequitur is linear on the length of
the input.

Training
On average, it took less than one second to create the
grammar for 5000 commands (2.26GHz, 1GB, Intel
Pentium 4).

Detection
On average, verifying one block of 100 commands,
including updates, took 127 milliseconds.
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Experimental Results, k = 7
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Variations

1. Without the global scripts

2. With k = 49 instead of k = 7

3. With command frequencies only. This answer the
question: are the sequences really useful, perhaps
the command frequencies only are as good?
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Experimental Results, k = 49
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Experimental Results, without Global Scripts
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Experimental Results, Frequencies Only
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Summary

On the Schonlau datasets, our approach gives the
highest detection rate across all false positive rates for
all known published methods.

Our main improvement: (efficiently) recognising
nested (common) repeated sequences from the given
behavioral data.

The computational cost is low, it can be applied in
real-time.

Could be generalized on more fine grained
observables, such as system calls.
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