
A Prevention Model for
Algorithmic Complexity Attacks

Ms Suraiya Khan,
Dr Issa Traore

Information Security and Object
Technology (ISOT) Lab
University of Victoria
Victoria, BC, Canada
http://www.isot.ece.uvic.ca

Content

1. Preamble
2. Introduction
3. Complexity Attack
4. Attack Prevention
5. Evaluation
6. Conclusion

1. Preamble
The SPIDeR Project

Structure

Frequency

Load

Randomness

Network Anomalies
Detectors

Host Anomalies
Detectors

DoS

Privilege Esc.

Masquerade

Network Forensics Intrusion Response

2. Introduction

Context

• DoS: second largest cause of monetary
loss according to a survey by FBI/CSI.

• Over $65M loss in year 2003 is reported
by 530 organizations who participated in
the survey.

• So necessity to develop DoS protection

mechanisms.
- effective DoS protection requires effective DoS detection

2. Introduction (ctd.)

DoS Attack Dimensions

2. Introduction (ctd.)

•Flooding: Attack sends too many requests
to a system resource.

- Increases arrival rate.

•Complexity: Attack sends many lengthy

requests to the resource.

- Requires more resources for a request than

what is typical.

- May not increase the arrival rate significantly.

Resource Consumption Attacks

2. Introduction (ctd.)

Objectives of Our Work

•Develop prevention mechanisms against
complexity attacks.

•Use Service time to detect probable
complexity attack requests and drop
them.

Complexity Attack

•Consists of exploiting the working principles of
algorithms running on computing systems.

•Made possible when the average case complexity of
an algorithm is much lower than the worst-case time
or space complexity

3. Complexity Attack

•Since deterministic algorithms are the most vulnerable,

randomization is used as solution, but:

-this lacks flexibility, and

-it has been shown recently that randomized algorithms are also

vulnerable.

3. Complexity Attack (ctd.)
Some Algorithms Prone to Complexity

Attacks:
- Quick sort

- Hashing

- Pattern Matching

- Java Byte Code Verification

- B+ Tree

Example of Complexity Attacks
Quick Sort: used to sort large number of elements.

Average case: O(nlogn)

Worst case: O(n2)

4. Attack Prevention

•Response Time = Waiting Time + Service Time

- Waiting time: Depends on how many higher priority
requests are in the queue.

- Service time: Time when the request gets service from
the resource.

Impact of Attacks on Response Time

4. Attack Prevention (ctd.)
Possible detection Principles

1. Input size

2. Likelihood of particular service time

3. Temporal density of less likely input (in
terms of service time or input size).

Using Service Time

Request Service Time can be analyzed and request
can be dropped in two ways:

• During Actual execution (Delayed) refer to most likely
service time for that input size.

• Before execution begins: using input property scanning and
service time look-ahead (may have high complexity).

4. Attack Prevention (ctd.)

().lg,,,_ orithmastateobjectsticscharacteriinputfTimeExecution =

Example: Linux ‘ls’ command:
•Input Characteristics: semantics of arguments and flags.

•Object: directory structure.

•State: present content of the directory structure.

•Algorithm: ‘ls’ program (necessary to identify which algorithm we are dealing with).

Prevention model

Compute for each request: <ExecutionTime, pr>
- ExecutionTime: estimated request execution time (here refers to service

time)

- pr: drop probability in case the request doesn’t finish in estimated time

4. Attack Prevention (ctd.)

Example: Quick Sort and delayed drop scheme

•Input Characteristics: Number of elements n.

•Object: Don’t care.

•State: Don’t care.

•Algorithm: glib2.0’s g_qsort_with_data .

().lg,,,_ orithmasticscharacteriinputfTimeExecution −−=

Execution Time: computed using regression analysis

4. Attack Prevention (ctd.)

For Quick Sort and Delayed drop scheme:

1.Maximum of Most likely Service time (offline Analysis) : Linux
“time” command –real trace or randomly generated elements.

-generate inputs randomly for each value of n (n varies from 100-
314×106; uneven jump)

-for each n take several samples, and from sample execution times,
take maximum.

2. Adjusted most likely execution time with 40% increase -
conservative most likely estimate.

3.We use a fixed threshold or Regression Equation based on
conservative most likely time for different n (offline analysis).

Regression Analysis

4. Attack Prevention (ctd.)

Otherwise the most probable service time

.0991.0
103

1055.13 6 −

×
×= nY

Detection principle:

Nonconforming request: Test request has consumed
more than the conservative most likely time but did
not finish yet– probable attack.

(1)

Regression Analysis (ctd.)

Fixed threshold
For number of elements n (≤ 70,000) most likely service time is set

to 0.252 second

5. Evaluation

1. Pentium 350 MHz

2. Fedora Core

3. Regression (offline analysis)

4. Already consumed time in Service by a process
with id “pid” from /proc/pid/stat (runtime
analysis)

5. Testing in the presence of complexity attack on
deterministic quick sort (written by us) and
randomized quicksort (glib2.0) [*Attack is
still possible].

Settings

5. Evaluation (ctd.)

Randomized Algorithm

Worst case normal input: very unlikely

Attack (Worst case) input: Possible

So, drop the request (with probability one), which
does not finish within the estimated time .

5. Evaluation (ctd.)
Randomized Algorithm (ctd.)

5. Evaluation (ctd.)
Randomized Algorithm (ctd.)

Same as above and based on
the sampling rate and the
scanning speed on
/proc/pid/stat for all pid.

NoneOnline

All Requests with n≥70,000NoneOffline

Right detection False
positive

Detection

5. Evaluation (ctd.)
Deterministic Algorithm:

Worst case normal input: likely.

Attack (Worst case) input: Possible.

So, we cannot always drop requests, which do not
finish within the estimated time.

Drop nonconforming requests based on

•Random Drop Probability

•Remaining user token

•Temporal density

•CPU Queue size

5. Evaluation (ctd.)

All worst case inputs have same size (40,000); continuous
attack.

0.770.19 User Token, temporal
density, and queue size

0.860.19Temporal density and
Queue size

pp Random Drop (drop
probability = p)

Right DropWrong DropPolicy

Deterministic Algorithm (ctd.):

6. Conclusion

Reactive:

Gligor: Maximum Waiting Time (waiting time
depends on load).

Spatscheck: Resource accounting (like static
threshold)

Gal: Code hardening (no detail available).

Related Works

Proactive:

Crosby: Randomization (inflexible, approximate result,

attack still possible).

6. Conclusion (ctd.)

Our model of detection followed by drop is a reactive
approach – some wrong drops.

Future Work:

•We are working on some proactive approaches to

supplement the reactive ones.

•Evaluate detection and drop model on other algorithms

prone to Complexity Attacks.

