A Learning-based Approach
to the Detection of
SQL Attacks

Fredrik Valeur, Darren Mutz, Giovanni Vigna
Reliable Software Group
Department ot Computer Science

University of California, Santa Barbara

http:] | www.cs.ucsb.edn/ ~rsg

Web-based Applications

Web applications have become pervasive
— Use server-side execution mechanisms to access application-specific data
— Use client-side execution mechanisms to manage user interaction

Web applications are highly available
— Deployed by the vast majority of companies, organizations, institutions
— Can be reached through firewalls

Infrastructure (Web servers, DB engines) developed by security-aware developers

Application-specific code often vulnerable

— Developed in-house to provide custom functionality by programmers with limited
security skills

— Developed under time-to-market pressure (“get the job done” syndrome)

Result: Web applications are popular attack targets

: SQI.-based Attacks

* SQL injection attacks

— Unsanitized user input 1s used to compose an SQL query (e.g., string concatenation of
user-provided parameters)

— Attackers can provide input that contains SQL code and modifies the application
behavior

— 'These attacks can also be performed in two steps when DB content is used to
compose SQL queries

e XSS scripting attack
— Unsanitized data 1s stored in the back-end database of a web application

— Attackers can store scripting code that will be executed in the browser of an
unsuspecting user

e Data-centric attacks
— Unchecked user input values can cause unexpected application behavior

— Attackers provide unexpected values to trigger anomalous behavior

Does It Matter?

1999 1552 257 16.6 %
2000 1203 300 24.9 %
2001 1363 381 28.0 %
2002 1507 538 35.7 %
2003 956 235 24.6 %
2004 1208 318 22.2 %
Total 7861 2045 26.0 %

Foiling SQI.-based Attacks

Prevention
— Access control mechanisms (difficult to “get it right”)
— Code audits (expensive and effort/expertise-intensive)

— Pen testing (expensive and cannot keep track of fast-changing applications)

Misuse detection (and response)
— Snort (network tratfic)
— WebWatcher (web log entries)
— WebSTAT (network traffic, web log entries, system calls)
Misuse detection systems are precise and effective but...
— These system do not analyze the actual SQL query
— Unforeseen vulnerabilities are introduced by web-based custom applications

— Developing signatures is time-consuming and requires security expertise

N Anomaly-based Detection of
- SQL. Attacks

Anomaly detection relies on models of expected behavior and
detects deviations from the models

Assumption: Malicious activity generates anomalies
Assumption: Anomalous behaviour is to be considered malicious
Advantage: Can detect previously unknown attacks

Approach: A multi-model, learning-based anomaly detection system
to detect SQL-based attacks

— Developed leveraging the libAnomaly framework developed at UCSB
* http://www.cs.ucsb.edu/~rsg/libAnomaly

Related Work

Specification-based anomaly detection
— 'The characteristics of “normal behavior” are specified by a human expert
— Advantage: Reliable models and few false positives
— Disadvantage: Models can be difficult to write/derive
Learning-based anomaly detection
— 'The characteristics of “normal behavior” are automatically derived from training data
— Advantage: Reduced expertise-intensive setup

— Disadvantage: Incomplete, may generate false positives, may be vulnerable to mimicry
attacks (e.g., Wagner’s and Maxion’s works)

Data mining techniques for network traffic (e.g., S. Stolfo and W. Lee’s work)
Statistical analysis of OS audit records (e.g., D. Denning and A. Valdes)

Sequence analysis of operating system calls (e.g., S. Forrest’s approach)

: Closely Related Work

>

e S. Lee etal, “Learning Fingerprints for a Database Intrusion Detection System,’
ESORICS 2002

— Learns structural models of acceptable SQL queries

— Vulnerable to mimicry attacks

e Halfond et al,, “Combining Static Analysis and Runtime Monitoring to Counter
SQL-Injection Attacks,” ICSE Workshop on Dynamic Analysis, 2005

— Uses static analysis to generate models of acceptable SQL queries

— Cannot address complex code structure

* Some commercial tools provide learning-based mechanisms against SQIL-based
attacks (difficult to compare because details are not provided)

— Imperva’s SecureSphere

Architecture

x
~
s N
Webserver s N
(A
4 N\
J
A g Profiles
O—> Provider Parser Feature Selecto] [][-][]
L J E ' Models
v \ 4
SELECT x FROM y

WHERE a='User' AND
b=3 OR c='str'

@% \ Models and Profiles

* Model: set of procedures used to evaluate a certain feature
of an SQL query

— Single feature: string length
— Multiple features: relationship between field values

— Series of queries: time delay between queries

e Profile: association of a model with one or more attributes
ot a specific query

— Example: string length model for the user attribute of the query
used during login

10

“\
@% Training

* Models can operate in one of two modes

— Training
— Detection

* During training, profiles are established during a two-step
training phase

* First phase: captures profiles

* Second phase: determines anomaly thresholds
— Highest anomaly score is recorded

— Thresholds set to a value x% higher than the highest anomaly
score

11

W\
@% Detection

* A model assigns a probability value p to a query or an
attribute of a query, given an established profile

— p = 0 means anomalous

* The anomaly score of a query is determined by
composing the results of the applicable models

- Ylog (1-p,)

m&Models

* High anomaly score values indicate anomalous queries

12

Architecture

x
~
s N
Webserver s N
(A
4 N\
J
A g Profiles
O—> Provider Parser Feature Selecto] [][-][]
L J E ' Models
v \ 4
SELECT x FROM y

WHERE a='User' AND
b=3 OR c='str'

W\
@% Event Provider

* Responsible for supplying the IDS with a stream of SQL queries

* Does not rely on application-level mechanisms to collect the query
data

* Collects the name of the script executing the query

— TFuture extensions are planned to include line number

* Implemented by modifying the system libraries that support DB
connectivity

14

Parser

Generates a higher-level representation of the query

Quertes are tokenized into keywords and literals

— Literals are the only fields that should contain user input
Tokens representing table fields are augmented with a type
A type table is automatically generated by parsing the database schema
Each literal’s type 1s used to determine which models can be applied

New, custom data types can be specified by the user to allow for better
characterization (e.g., varchar can be refined to contain XML data)

Literals’ types are inferred by using simple rules
— Comparison to a typed field

— Insertion in a typed field of a table

15

Feature Selector

The feature selector prepares a query to be evaluated by models

It generates a skeleton query that represents the structure of the query (i.e., all constants
are replaced by place-holders)

If models are being trained
— The invoking script and the skeleton are used as a key to lookup the corresponding profile

— The relevant profile is updated

If thresholds are being determined
— The relevant profile is recovered
— The corresponding models are used to determine an anomaly score

— The thresholds are updated to allow the event to fit as normal

If detection 1s being performed
— Anomaly score determined as in the threshold-learning phase

— Queries whose anomaly scores overcome the established threshold are marked as malicious

16

Detection Models

String length

— Statistically models the “normal” length for a certain parameter of a specific query

(based on Chebyshev inequality)

String character distribution

— Statistically models the relative frequencies of characters (based on Pearson’s y>-test)

String prefix and suffix matcher

— Models shared substring values at the beginning and end of strings (e.g., pathnames
and extensions)

String structural inference

— Generates a probabilistic grammar of the parameter value (based on Stolcke and
Omohundro’s state-merging technique)

Token finder

— Models parameters that assume a finite set of values (based on Kolmogorov-Smirnov
non-parametric variant)

17

Evaluation

We evaluated our system using an installation of the PHP-Nuke web portal system

— Standard LAMP configuration

Attack-free audit data was generated by
— Manually operating the web site
— Using custom bots that simulate user activity
Data sets
— Training (44035 queries)
— Threshold learning (13831 queries)
— False positive rate estimation (15704 queries)
Attacks
— Developed four different SQL-based attacks (0-day) against PHP-Nuke

— Collected corresponding traces

18

. Attacks

* Resetting users’ passwords

— Post data: name='; UPDATE nuke users SET
user password='<new md5 pass>' WHERE username='<user>'; --

— Result: SELECT active, view FROM nuke modules WHERE
title='Statistics'; UPDATE nuke users SET
user password='<new md5 pass>' WHERE username='<user>'; ——'

* Enumerating all users
— Post data 1: name=Your Account
— Post data 2: op=userinfo
— Post data 3: username=' OR username LIKE 'A%'; ——

— Result: SELECT uname FROM nuke session WHERE uname='' OR
username LIKE 'A%';, — '

19

. Attacks

* Parallel password guessing
— Post data 1: name=Your Account
— Post data 2: username=' OR user password = '<md5 pass>';
—-'Postdau13:user_password=<password>

— Result: SELECT user password, user id, FROM nuke users WHERE
username='' OR user password = '<md5 password>' ;'

* Cross-site scripting
— Referer HTTP header field set to "onclick="alert (document.domain) ;"

— Result: INSERT INTO nuke referer VALUES (NULL, '"
onclick="alert (document.domain) ;""')

e Notes:
— Magic quotes were disabled

— Used bleeding-edge version of MySQL supporting multiple queries separated by
semicolon

20

W\
@% Results

* All attacks were detected with no false positives

* Running the false positive test (15704 attack-free queries)
caused 58 false positives (0.37%)

— Problem with changing month

* Adding new custom data types (“month” and “year”)
reduced false positive to just 2 (0.013%)

— Queries that were not observed in training

21

/ Conclusions

Web applications are vulnerable to attacks against back-end databases

We developed an anomaly detection system that performs learning-
based, multi-model characterization of SQL queries performed by
web applications

Evaluated our tool against a real-world application and real “novel”
attacks

Both detection rate and false positive rate are satisfactory

Future work
— More models
— More testing

— Integration with webAnomaly and sysAnomaly

22

\\\

My Office Here

Questions?

23

