Function Call Tracing Attacks to Kerberos 5

Julian L. Rrushi, Emilia Rosti
Dipartimento di Informatica e Comunicazione
Universit degli Studi di Milano
Via Comelico 39, 20135 Milan - Italy

e-mails:jlr@cert-it.dico.unimi.it, rose@dico.unimi.it

June 22, 2005

Abstract position library which is placed between the Kerberos applicati
client’'s process and Kerberos shared libraries, and acts as a mal
During the authentication process in the Kerberos network au-the-middle does in the network environment. The attacks discus
thentication system, all the information exchanged between thein this paper were performed in order to assess the defense of |
application client and the Kerberos authentication server is theberos 5 from local hostile interceptions and interferences. Tt
argument of some function calls to Kerberos shared libraries.demonstrate that Kerberos application clients and Kerberos shz
Since this information is exchanged in the clear, local attacks|ibraries are vulnerable to function call tracing attacks.
that intercept function calls may inspect and manipulate it before This paper is organized as follows. Section 2 briefly recalls t
resuming their execution. This paper describes function call Kerberos authentication system. Section 3 illustrates the conce
tracing attacks against the Kerberos authentication system in gunction call tracing, which is at the base of the attacks we pres
time-sharing environment. They use the Dyninst API library, in Section 4 and Section 5. Section 6 discusses related work
developed to support the easy construction of tools for the controlcall tracing. Section 7 summarizes our findings and concludes
and manipulation of programs at run-time, and ad hoc interpositionpaper.
libraries. We illustrate the proposed attacks against two Kerberos
client applications, namelyinit andkpasswd.
2 Kerberos
Keywords Kerberos, interception, tracing, shared libraries, library))))
interposition, krb5-libs, Dyninst. In this section we briefly recall Kerberos main features that are
interest to our work. For a more detailed description of Kerber
architecture and functionalities, as well the most up to date inforn
1 Introduction tion about releases and security advisories see [15, 16]. Kerbe
is a trusted third-party authentication service that provides a me
Computer systems over the years have been affected by many kindsf verifying the identities of principals in an unprotected netwol
of vulnerabilities ranging from flaws in the design or implemen- [1]. A Kerberos authentication service is composed of the Key D
tation of communication protocols to buffer overflows and format tribution Center (KDC), which in turn comprises the Authentice
strings. Interception and/or manipulation of communications overtion Server (AS) and the Ticket Granting Server (TGS). These t
the network has also been a continuous threat to information secusupply temporary session keys and initial tickets, as well as a ¢
rity. To resolve this problem network protocols such as Kerberosvice for managing principals and their passwords from anywhe
have incorporated cryptographic functionalities in order to protectin the network, called Kerberos Administration Service (KADM)
their communications sent over the network. The authentication process is started by the application client
Practice has shown that the network is not the only point being inis composed of the messages exchanged between the applic:
danger from such a threat. This paper describes a set of functiorlient, the KDC, and the application server. If the authentic
call tracing attacks which aim at intercepting and manipulating ar- tion process succeeds, the authentication server issues a certifi
guments of the function calls an application makes to the stack ofcalled ticket.
shared libraries. These attacks were performed against Linux im- Inthe case Kerberos uses secret-key cryptography, both Kerbs
plementations of Kerberos 5. They were performed in two differ- and the application client derive the application client’s secret k
ent ways. In the first form a call tracing attack uses the Dynlnst li- from the application client’s password. Possession of the secret
brary in order to spy or control a target Kerberos application client’s is considered by Kerberos as a proof of identity, thus it is of pat
process. In the second form a call tracing attack uses an intermount importance that the application client keeps its secret k

and its password, secret. Therefore, one of the most critical infor- Dynlinst performs operations on the target process either via
mation is represented by the password the application client shareprocess debugging interface of the operating system or the run-t
with the KDC. Other critical information comprises the password instrumentation library (RTinst), which is a shared library Dynin:
the application server shares with the KDC, the session keys andoads in the address space of the target process. In a Linux
sub keys. In what follows we show how it is possible for an at- tem, the process debugging interface of the operating system
tacker to get hold of such sensitive information by using “function be accessed vigtrace or /proc. Note that:

call tracing.”
1. any user process can be attachedtieace by a process run-

ning with the same process id as that user, or by root.

3 Function Call Tracin
9 2. /proc provides access to the information related to a runni

process, which is needed by thect1 () system call to oper-

A function call tracing attack is one that aims at intercepting and ;
ate on it, only to the owner of that process or to root.

manipulating the arguments of the function calls a target applica-
tlpn makes to the SySte”.“ shared libraries. It may be a_pphed n tWOThus, an attacker, who is a simple user of the time-sharing s
different forms as described by the two following sections. In the : : -

. C . . tem, cannot manipulate directly a process of another user using
attacks discussed in this paper we consider the attacker has no Privy o
. . . yninst API. In order to bypass such a limitation, we developec
ileges but those of a simple user. A virus program was developed to
. ; . . virus program that issues API calls to the DynInst library in ord
implement the attacks. This was done in order to have the attackmq . : o

X . . . o0 use its functionalities.

code execute with the uid of the target user, which allowed circum-
vention of all the constraints dictated by the operating system. Its
functionalities vary from simply setting an environment variable on 4.2 Attack Organization
behalf of a user to attaching to processes of the Kerberos clients we
used to demonstrate our attacking strategy, and operating on thent.he attack discussed in this section consists of inserting into a fu
Such an approach proved to be the strongest form of attack as it i§ion of the target processsaippet i.e., a representation of a piece
possible to act with the user id of the target user, which is funda-of executable code to be inserted into a program at a given pc
mental for our attacks to succeed. Furthermore, the attacker doeEl4]. The snippet is inserted at the beginning of the target fur
not need to be logged in when the victim user is and the attacker'dion and records all its arguments. Snippet insertion is one of 1
user id is not recorded in any log file. Our attacks were performedDyninst marvelous functionalities. In our case, the target progr:
on a Linux Fedora Core 3, 2.6.9-1.667 kernel, operating system's kpasswd as depicted in Figure 1krb5_change_password is
running on an Intel Pentium 4 processor machine with 512 MB of the function where the snippet was inserted.
RAM. The Kerberos version running on the system is composed of The attack comprises the following phases:

krb5-server-1.3.4-7, krb5-libs-1.3.4-7 and krb5-workstation-1.3.4-
7. 1. The viral code first attaches to the targgbsswd process.

This operation has no effects on the state of the tagetswd
process. A thread is created that refers to kKpesswd

4 Dynlinst-Based Attacks process.

The viral code finds therb5_change_password function in
the program image associated with the thread created in
previous phase.

In this section we show how the Dyninst API library can be used 2.
to attack the Kerberos authentication system. We performed the at-
tack discussed in this section agaikstsswd, which is a Kerberos

client application that enables users to change their password stored3

in the KDC database. It locates the entry point terb5_change_password and in-

serts the snippet there.

4.1 Dynlnst API Library kpasswd executeskrb5_change password only once. The

smoothest attack execution occurs when the viral code attac
The Dynlinst API library was developed to provide a portable li- to the targekpasswd process after the Kerberos shared librarie
brary for tool builders to construct tools that operate on a runninghave been loaded but befateb5_change password is called. If
program [5]. It turns out Dyninst API is a very powerful attack kpasswd had already callettrb5_change _password in the mo-
tool since it offers a wide range of actions that can be performedment the viral code attaches to it, trying to make it pass one m
via dynamic instrumentation. A DynInst APl user may observe time in order for the snippet to execute may crash it, unless a pro
and/or control the execution of a target process, actively insert newmanipulation of its variables is performed. Whepasswd calls the
instructions into the address space of the target process, have nefunctionkrb5_change_password, the snippet is executed first anc
libraries dynamically loaded in the process address space, replaceecords the value of the function parameatewpwthat represents
single instructions or entire functions. the new password of the target user.

viral
process

virus

Dyninst
Library

______ =~ > |nstrument

kpasswd snippet
process || oo

Run Time

Library

System Calls

Kernel

Figure 1: Dyninst based attacking technique.

5 Interposition Libraries Based Attacks two typical steps of an interposition attack are described separa
in the following subsections.

In this section we describe an alternative way to trace a victim
process’ function calls, namely via interposition libraries. The
process of placing a new or different library function between the 5.1

Techniques for Achieving Interposition

application and its reference to a library function is called interpo- Interposition can be achieved in any of the following ways

sition [9]. Interposition libraries are placed between a program and
the shared libraries to which functions and variables of this program 1.
are linked during compilation. This strategic position enables them
to intercept all the function calls the program makes to the stack
of shared libraries. Interposition libraries were originally invented
for monitoring the behavior of functions, gather statistics, perform
debugging etc, but they can also be used for illegitimate purposes.
Programs that depend on shared libraries are vulnerable to a variety
of attacks that involve switching the shared library that the program
is running [3]. In [13] are described attacks against programs that
are linked to thelibc andMPI shared libraries. An attack which
uses interposition libraries to intercept sensible information passed
to the shared libraries in the form of function call parameters, in
this paper is referred to as an interposition attack.

The interposition attacks discussed in this paper targeted client
applications which use thlerb5-libs package. krb5-libs contains
the shared libraries needed by Kerberos 5. In this section are 2.
described interposition attacks we performed againstit and
kpasswd. These interposition attacks were performed by viral code
in two sequential steps:

1. Achieving Interposition

2. Intercepting Function Calls with Ad Hoc Interposition Li-
braries

The efficiency of these attacks demonstrated to be entirely based
on the ability of the attacker to interpose between the Kerberos ap-
plication program and the Kerberos shared libraries it was linked to.
However, the success of the entire interposition attack depends on
the individual success of each one of the steps given above. These

LD _PRELOAD

LD_PRELOAD is an environment variable whose tradi
tional goal is to allow application developers to trace ar
debug their application programs. In these cases applicat
developers assign D_PRELOAD a value that is the path to a
shared library they need to interpose. During dynamic bindi
the dynamic linker will give precedence to the library whos
path is contained irLD_PRELOAD over the system’s sharec
libraries. The attacker as a simple user of the time—shar
system cannot directly set environment variables on behalf
another user. Consequently this step was performed by v
code which set theD_PRELOAD to the path of the malicious
interposition library on behalf of the user who executed it.

Manipulation of linkage tables

During the compilation of a program, which contain
references to functions or variables of shared libraries, t
compiler and static linker generate a linkage table. T
linkage table contains symbols, i.e., functions and variabl
and for each symbol a pointer. The linkage table is placed
the program’s executable file. When the program is loade
the dynamic linker sets each pointer to the exact location
memory where the respective symbol is defined.

The interposition is obtained by accessing timkage table
and modifying the pointer corresponding to the functic
we want to redirect. Although there may be other differe
techniques for doing this, a general approach consists

loading the interposition library by using interfaces provided returned.kinit then proceeds to store the ticket in the previous
by the operating system, locating the memory address of thegenerated default cache file. This wanalicious-usehijacked the
interposing function defined by the interposition library and destination where the ticket oerwas to be stored.

setting the pointer in question to point to this memory address. A similar attack was performed againgtasswd. In this case,
the malicious-uses viral code activates interposition and wait:
for userto change the password he/she shares with the Kerbe
)) _ . server. Wheruserexecutekpasswd to change the password, the
As we wrote in Section 4, Dyninst can replace existing majicious interposition library intercepts the call to the functio
!nstructlons of the target process and Ipad new I|bra'r|es in krb5_change_password. Since one of the arguments isers
its address space. Interposition is achieved by loading the,e,), nassword, the malicious library records such a value and t

interposition library into the address space of the target .ys the reakrbs_change_password function from the Kerberos
process and changing the call to a function of the Kerberosshared libraries.

shared libraries to be a call to a function of the interposition
library, which in turn may call the function in question of the
Kerberos shared libraries, thus put itself in the middle. 6 Related Work

3. Dyninst

.) In this section we review previous work regarding call tracing ar
5.2 Intercepting Function Calls its use as an attack strategy in a variety of environments.

Once interposition has been achieved using one of the techniques
illustrated above, the proper code must be provided for the attack %51 cCall Tracing for IDS Evasion
succeed Figure 2. In our case, wklnit andkpasswd, the goal
is to access another user’s tickets and obtain the new password dhterception of function calls and modification of their argumen
the target user, respectively. We developed the interposition libraryhas been used as a technique to evade host-based Intrusion D
aimed at hijacking the destination file where a user stores the tick-tion Systems (IDS) [7]. A typical host-based IDS examines tl
ets he/she obtains with theinit client applicatiof. The stolen system calls executed by each application. How the intrusion
tickets, once stored in the destination indicated by the attacker, areletected from the analysis of the function call arguments or its ¢
accessible to the attacker. Without loss of generality, we performedcurrence or other parameters depends upon the specific IDS. Ir
the attack on a Linux system with two users, namedgrwith uid the IDS tries to learn the normal behavior of applications by colle
503 andmalicious-usemwith uid 502. Both users have accounts ing system call traces during time intervals when the system is |
on a remote Kerberos server as principssrandmalicious-user under attack. Then the IDS extracts all possible sub traces cont
respectively, and they can both connect to a remetmet server ing six consecutive system calls and inserts them into a data b
once authenticated by Kerberos. These steps are referred to as lib@rning phase A sub trace that
Before having the viral code interpose his/her malicious in- does not match any of the entries of the database is tagged as at
terposition library betweekinit and Kerberos shared libraries, mal. In themonitoring phasewhen the IDS monitors applications
malicious-useruses an ad hoc program that generates the defaulin order to detect intrusions, the IDS collects traces of the functi
cache file where tickets can be stored and changes its permissionsalls executed by each application and measures the degree o
so that any other user can read and write such a file. Then he ininormality of each individual call trace as the number of abnormr
tiates the infection process. The viral code activates interpositionsub traces it contains.
and waits for a victimuser, to request a ticket wititinit in or- In order to detect an intrusion, the IDS can, as well, use we
der to access theelnet service. The hijacking process occurs points and impossible paths [6]. Waypoints are kernel-suppor
whenkinit calls the functiorkrbs_cc_resolve. In that moment trustworthy markers on the execution path of an application tf
the malicious interposition library intercepts the function call and must be followed by that application when making system cal
replaces the argument containing the name of the file where thean impossible path is a sequence of system calls that an appl
ticket will be stored with the name of the default cache file gen- tion will never execute.
erated before. The real functicrb5_cc_resolve from the Ker- The evasion technique consists of replacing the arguments of ¢
beros shared libraries is then called with the modified argumentstem calls that are part of the normal behavior of an application w
The malicious interposition library also intercepts the call to the values that represent operations the attacker wants to perform. -
krb5_cc_initialize function, to prevent it from detecting the way the legitimate system call executed by the application will ex
anomaly of the destination file that does not belongger: In this cute on behalf of the attacker. For instance, if the attacker want
case, the reakrb5_cc_initialize function from the Kerberos write to the shadow file and the functiepen("/1ib/1libc.so",
shared libraries is not called and the value 0, i.e. no error, is simplyg_RDONLY) belongs to the normal execution of an application, |
1The code of the interposition library is available for download at the URL: the exact m_oment the application calls it the attaCk.er r(_eplaces
http://cert-it.dico.unimi.it/~jlr/interpose-lib.c after contactng argument with("/etc/shadow", 0-RDWR) [7]. Considering the
the authors. way a typical IDS works, this attack will not be detected.

kerberized client

1. Regular call to Kerberos shared libraries

1 D 2. Redirected shared library call

o8

krb5 libraries interposition librar
7 KDC

Network

o8

Figure 2: Interposition libraries based attack

6.2 Call Tracing in Attacks to ODBC Condor schedules the malicious job on an idle EM of choice. On

imol . | bl it starts executing on the remote host withd nobody, the mali-
An example of a protocol whose implementation is vulnerable to cious job spawns a new process, which will remain in the syste

call tracing attacks is the Open Data Base Connectivity (ODBC) o\ e, after its parent completes or is migrated by Condor to anot

protocol [19]. In a typical interaction between a client and a data- EM. When a new job is allocated on the compromised machine,

base Server, IT? hO_DBC Manager'of the (_:Irl]er;]t c(:jallsbthe client's malicious resident process can intercept the system calls perforr
ODBC Drive, which in turn communicates with the database server.by the new job and manipulate them in order to perform operatio

In early standard implementations of this protocol, by locally inter-
cepting the function calls from the ODBC Manager to the ODBC
Drive, it was possible to capture the user’s id and password. As
a countermeasure to call tracing, various database technologiey Qpservations and Conclusions

avoided passing sensitive information through an ODBC connec-

tion by creating a separate secure channel, e.g., for sending autherrhe attacks we discussed in this paper may be performed direc
tication credentials. Some proprietary implementations of ODBC j . not through viral code but executing attacking code with the
added encryption functionalities to ODBC Manager and ODBC yser id. This is possible if the level of privilege of the attacke

on the SM from where the new job had been submitted.

Drive in order to solve the problem [4]. is high enough to be able to affect other users’ execution en
ronments or attach to other users’ processes and operate on tt
6.3 Call Tracing in Attacks to Condor Such a category of users can, of course, apply other strong atte

like backdooring binaries [17], injecting a redirected library ca

Condor is a specialized workload management system for computeinto an executable [18] or using a compiler to statically inject cal
intensive jobs [11]. It allows users to schedule and run their appli-to a tracing library into an application program. However, whe
cation programs on remote idle hosts in a widely-distributed envi- integrity checking is in place and high privileged malicious use
ronment. Condor users are not assigned an account on the remotmannot control it, they could still apply the strategies discussed
host. In the remote hosts their applications run with an anonymousthis paper in order to attack a Kerberos user without modifying tl
and restricteaiid, such asobody on a Linux system. When auser system software. The high privileged users category includes pt
submits a job to Condor from itSubmitting MachingSM), Con- ileged users specified in the fifetc/sudoers in such a way that
dor places it into a queue and according to the adopted schedulinghey are allowed either explicitly, i.e., by uid or implicitly, i.e., by
policy it decides when and where, i.e., on what host, referred to agid, to create processes that can attach to processes of other
Execution Machin€EM), to run it. After allocating the application or set environment variables on their behalf. Users who are gran
program to a remote EM, Condor links it with the Condor RPC li- a chroot virtual file system and argtrace-capable are also part
brary, which forwards all the system calls issued by the applicationof the category.
to the SM via remote procedure calls. That is, systems calls per- Another scenario where the attacks discussed in this paper
formed by an application in the EM actually execute on the SM andtake place is represented by users with different usernames
the values they return are sent back to the EM. passwords but the same usenidld [3]. Under Linux, theiseradd

In such a scenario, an attack can be performed as follows [5].command has an optione, that allows the system administrator tc
The attacker submits a malicious job to Condor from his/her SM. create accounts with the same uid. In this scenario each of the u:

with the same uid can spy the others by tracing their processes.

Unless the attacks described in this paper are performed in a di-
rect way by the category of high privileged users defined above,
they require the execution of code on behalf of the target user. This
is why we adopted the virus strategy, so that the malicious user can
act locally as a simple user. Such a local user has better chances
to infect the local system than an outside attacker. However, being
a local user is a weak requirement, as an attacker could perform
the attacks we described from any host on the network, as long as
he/she succeeds in infecting the target host with the virus and even-

tually a Kerberos user authenticates in a Kerberos realm.

The work presented in this paper focused on demonstrating the
problematic nature of tracing the function calls in a Kerberos en-
vironment. Further study will concentrate on building algorithms
that aim at detecting function call tracing attacks, and on defin-
ing mechanisms that defeat local interception, at least with regard
to attacks against the confidentiality of the Kerberos user. Other
fields of investigation include general integrity checking algorithms
for detecting infection activities inside the system, and lightweight
cryptographic separation techniques that could enable a process to
conceal its data and computation in such a way that it is unintelli-

gible to outside processes.

References

(1]

(2]

(3]

[4]

(5]

(6]

[7] Wagner D. and Soto P., “Mimicry Attacks on Host-based

(8]

Kohl J., Neuman B. C., “The Kerberos Network Authenti-
cation Service (V5),” RFC 1510, September 1993.

Pfleeger C.P., “Security In Computing,” Prentice Hall,
1997.

Garfinkel S., Spafford G., “Practical Unix & Internet Secu-
rity,” 2nd edition, O'Reilly, April 1996.

Fugini M., Maio F., Plebani P., “Sicurezza dei sistemi in-
formatici”, Apogeo, March 2001.

Miller B.P., Christodorescu M., Iverson R., Kosar T., Mir-
gordskii A., and Popovici F., “Playing inside the black box:

Using dynamic instrumentation to create security holes,”

Parallel Processing Letters, June/September 2001.

Xu H., Du W., and Chapin S.J., “Context Sensitive Anom-
aly Monitoring of Process Control Flow to Detect Mimicry

Attacks and Impossible Paths,” Proc. of the Seventh Inter-
national Symposium on Recent Advances in Intrusion De-

tection, RAID 2004, September 2004.

Intrusion Detection Systems,” Proc. of the 9th ACM Con-

ference on Computer and Communications Security, 2002.

Hofmeyr S., Forrest S., Somayaji A., “Intrusion Detection

Using Sequences of System Calls,” Journal of Computer

Security, 1998.

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Curry T.W., “Profiling and Tracing Dynamic Library Us-
age Via Interposition,” Proc. of the USENIX 1994 Summe
Conference, 1994.

Gonzalez M., Serra A., Martorell X., Oliver J., Ayguadk
E., Labarta J., Navarro N., “Applying interposition tech
nigues for performance analysis of OpenMP parallel app
cations,” Proc. 14th International Parallel and Distribute
Processing Symposium, IPDPS 2000, IEEE Computer S
ciety, 2000.

The Condor Team, “Condor High Throughput Compu
ing”, http://www.cs.wisc.edu/condor/.

Serra A., Navarro N. and Cortes T., “DITools: Application
level Support for Dynamic Extension and Flexible Compc
sition,” Proc. of the USENIX Technical Conference, Jun
2000.

Torres M., Liu Z., Florez G., Vaughn R. and Bridges S
“Attacking a High Performance Computer Cluster,” Proc
of the 15th Annual Canadian Information Technology St
curity Symposium, May 2003.

ParaDyn, “An Application Program Inter-
face (APl) for Runtime Code Generation,
http://www.paradyn.org/html/manuals.html.

M.L.T., “Kerberos: the network authentication protocol,
http://web.mit.edu/kerberos/www/ .

Neumann B. C., Ts'o, “Kerberos: An Authentication Sel
vice for Computer Networks,” IEEE Communications
32(9), September 1994.

Klog, “Backdooring Binary Objects,” Phrack Magazine
Vol 56, 2000. http://www.phrack.org/.

[18] Silvio Cesare, “Shared Library Call Redirection Vi

ELF PLT Infection,” Phrack Magazine Vol 56, 2000.
http://www.phrack.org/.

[19] ODBC, http://msdn.microsoft.com/library/default.asp?ur

us/odbc/htm/odhpart 1.asp

