
Function Call Tracing Attacks to Kerberos 5

Julian L. Rrushi, Emilia Rosti
Dipartimento di Informatica e Comunicazione

Universit̀a degli Studi di Milano
Via Comelico 39, 20135 Milan - Italy

e-mails:jlr@cert-it.dico.unimi.it, rose@dico.unimi.it

June 22, 2005

Abstract

During the authentication process in the Kerberos network au-
thentication system, all the information exchanged between the
application client and the Kerberos authentication server is the
argument of some function calls to Kerberos shared libraries.
Since this information is exchanged in the clear, local attacks
that intercept function calls may inspect and manipulate it before
resuming their execution. This paper describes function call
tracing attacks against the Kerberos authentication system in a
time-sharing environment. They use the DynInst API library,
developed to support the easy construction of tools for the control
and manipulation of programs at run-time, and ad hoc interposition
libraries. We illustrate the proposed attacks against two Kerberos
client applications, namelykinit andkpasswd.

Keywords Kerberos, interception, tracing, shared libraries, library
interposition, krb5-libs, DynInst.

1 Introduction

Computer systems over the years have been affected by many kinds
of vulnerabilities ranging from flaws in the design or implemen-
tation of communication protocols to buffer overflows and format
strings. Interception and/or manipulation of communications over
the network has also been a continuous threat to information secu-
rity. To resolve this problem network protocols such as Kerberos
have incorporated cryptographic functionalities in order to protect
their communications sent over the network.
Practice has shown that the network is not the only point being in
danger from such a threat. This paper describes a set of function
call tracing attacks which aim at intercepting and manipulating ar-
guments of the function calls an application makes to the stack of
shared libraries. These attacks were performed against Linux im-
plementations of Kerberos 5. They were performed in two differ-
ent ways. In the first form a call tracing attack uses the DynInst li-
brary in order to spy or control a target Kerberos application client’s
process. In the second form a call tracing attack uses an inter-

position library which is placed between the Kerberos application
client’s process and Kerberos shared libraries, and acts as a man-in-
the-middle does in the network environment. The attacks discussed
in this paper were performed in order to assess the defense of Ker-
beros 5 from local hostile interceptions and interferences. They
demonstrate that Kerberos application clients and Kerberos shared
libraries are vulnerable to function call tracing attacks.

This paper is organized as follows. Section 2 briefly recalls the
Kerberos authentication system. Section 3 illustrates the concept of
function call tracing, which is at the base of the attacks we present
in Section 4 and Section 5. Section 6 discusses related work on
call tracing. Section 7 summarizes our findings and concludes the
paper.

2 Kerberos

In this section we briefly recall Kerberos main features that are of
interest to our work. For a more detailed description of Kerberos
architecture and functionalities, as well the most up to date informa-
tion about releases and security advisories see [15, 16]. Kerberos
is a trusted third-party authentication service that provides a means
of verifying the identities of principals in an unprotected network
[1]. A Kerberos authentication service is composed of the Key Dis-
tribution Center (KDC), which in turn comprises the Authentica-
tion Server (AS) and the Ticket Granting Server (TGS). These two
supply temporary session keys and initial tickets, as well as a ser-
vice for managing principals and their passwords from anywhere
in the network, called Kerberos Administration Service (KADM).
The authentication process is started by the application client and
is composed of the messages exchanged between the application
client, the KDC, and the application server. If the authentica-
tion process succeeds, the authentication server issues a certificate,
called ticket.

In the case Kerberos uses secret-key cryptography, both Kerberos
and the application client derive the application client’s secret key
from the application client’s password. Possession of the secret key
is considered by Kerberos as a proof of identity, thus it is of para-
mount importance that the application client keeps its secret key,

1



and its password, secret. Therefore, one of the most critical infor-
mation is represented by the password the application client shares
with the KDC. Other critical information comprises the password
the application server shares with the KDC, the session keys and
sub keys. In what follows we show how it is possible for an at-
tacker to get hold of such sensitive information by using “function
call tracing.”

3 Function Call Tracing

A function call tracing attack is one that aims at intercepting and
manipulating the arguments of the function calls a target applica-
tion makes to the system shared libraries. It may be applied in two
different forms as described by the two following sections. In the
attacks discussed in this paper we consider the attacker has no priv-
ileges but those of a simple user. A virus program was developed to
implement the attacks. This was done in order to have the attacking
code execute with the uid of the target user, which allowed circum-
vention of all the constraints dictated by the operating system. Its
functionalities vary from simply setting an environment variable on
behalf of a user to attaching to processes of the Kerberos clients we
used to demonstrate our attacking strategy, and operating on them.
Such an approach proved to be the strongest form of attack as it is
possible to act with the user id of the target user, which is funda-
mental for our attacks to succeed. Furthermore, the attacker does
not need to be logged in when the victim user is and the attacker’s
user id is not recorded in any log file. Our attacks were performed
on a Linux Fedora Core 3, 2.6.9-1.667 kernel, operating system
running on an Intel Pentium 4 processor machine with 512 MB of
RAM. The Kerberos version running on the system is composed of
krb5-server-1.3.4-7, krb5-libs-1.3.4-7 and krb5-workstation-1.3.4-
7.

4 DynInst-Based Attacks

In this section we show how the DynInst API library can be used
to attack the Kerberos authentication system. We performed the at-
tack discussed in this section againstkpasswd, which is a Kerberos
client application that enables users to change their password stored
in the KDC database.

4.1 DynInst API Library

The DynInst API library was developed to provide a portable li-
brary for tool builders to construct tools that operate on a running
program [5]. It turns out DynInst API is a very powerful attack
tool since it offers a wide range of actions that can be performed
via dynamic instrumentation. A DynInst API user may observe
and/or control the execution of a target process, actively insert new
instructions into the address space of the target process, have new
libraries dynamically loaded in the process address space, replace
single instructions or entire functions.

DynInst performs operations on the target process either via the
process debugging interface of the operating system or the run-time
instrumentation library (RTinst), which is a shared library DynInst
loads in the address space of the target process. In a Linux sys-
tem, the process debugging interface of the operating system can
be accessed viaptrace or /proc. Note that:

1. any user process can be attached viaptrace by a process run-
ning with the same process id as that user, or by root.

2. /proc provides access to the information related to a running
process, which is needed by theioctl() system call to oper-
ate on it, only to the owner of that process or to root.

Thus, an attacker, who is a simple user of the time-sharing sys-
tem, cannot manipulate directly a process of another user using the
DynInst API. In order to bypass such a limitation, we developed a
virus program that issues API calls to the DynInst library in order
to use its functionalities.

4.2 Attack Organization

The attack discussed in this section consists of inserting into a func-
tion of the target process asnippet, i.e., a representation of a piece
of executable code to be inserted into a program at a given point
[14]. The snippet is inserted at the beginning of the target func-
tion and records all its arguments. Snippet insertion is one of the
DynInst marvelous functionalities. In our case, the target program
is kpasswd as depicted in Figure 1.krb5 change password is
the function where the snippet was inserted.

The attack comprises the following phases:

1. The viral code first attaches to the targetkpasswd process.
This operation has no effects on the state of the targetkpasswd
process. A thread is created that refers to thekpasswd
process.

2. The viral code finds thekrb5 change password function in
the program image associated with the thread created in the
previous phase.

3. It locates the entry point tokrb5 change password and in-
serts the snippet there.

kpasswd executeskrb5 change password only once. The
smoothest attack execution occurs when the viral code attaches
to the targetkpasswd process after the Kerberos shared libraries
have been loaded but beforekrb5 change password is called. If
kpasswd had already calledkrb5 change password in the mo-
ment the viral code attaches to it, trying to make it pass one more
time in order for the snippet to execute may crash it, unless a proper
manipulation of its variables is performed. Whenkpasswd calls the
functionkrb5 change password, the snippet is executed first and
records the value of the function parameternewpwthat represents
the new password of the target user.

2



Figure 1: DynInst based attacking technique.

5 Interposition Libraries Based Attacks

In this section we describe an alternative way to trace a victim
process’ function calls, namely via interposition libraries. The
process of placing a new or different library function between the
application and its reference to a library function is called interpo-
sition [9]. Interposition libraries are placed between a program and
the shared libraries to which functions and variables of this program
are linked during compilation. This strategic position enables them
to intercept all the function calls the program makes to the stack
of shared libraries. Interposition libraries were originally invented
for monitoring the behavior of functions, gather statistics, perform
debugging etc, but they can also be used for illegitimate purposes.
Programs that depend on shared libraries are vulnerable to a variety
of attacks that involve switching the shared library that the program
is running [3]. In [13] are described attacks against programs that
are linked to thelibc andMPI shared libraries. An attack which
uses interposition libraries to intercept sensible information passed
to the shared libraries in the form of function call parameters, in
this paper is referred to as an interposition attack.

The interposition attacks discussed in this paper targeted client
applications which use thekrb5-libs package.krb5-libs contains
the shared libraries needed by Kerberos 5. In this section are
described interposition attacks we performed againstkinit and
kpasswd. These interposition attacks were performed by viral code
in two sequential steps:

1. Achieving Interposition

2. Intercepting Function Calls with Ad Hoc Interposition Li-
braries

The efficiency of these attacks demonstrated to be entirely based
on the ability of the attacker to interpose between the Kerberos ap-
plication program and the Kerberos shared libraries it was linked to.
However, the success of the entire interposition attack depends on
the individual success of each one of the steps given above. These

two typical steps of an interposition attack are described separately
in the following subsections.

5.1 Techniques for Achieving Interposition

Interposition can be achieved in any of the following ways

1. LD PRELOAD

LD PRELOAD is an environment variable whose tradi-
tional goal is to allow application developers to trace and
debug their application programs. In these cases application
developers assign toLD PRELOAD a value that is the path to a
shared library they need to interpose. During dynamic binding
the dynamic linker will give precedence to the library whose
path is contained inLD PRELOAD over the system’s shared
libraries. The attacker as a simple user of the time–sharing
system cannot directly set environment variables on behalf of
another user. Consequently this step was performed by viral
code which set theLD PRELOAD to the path of the malicious
interposition library on behalf of the user who executed it.

2. Manipulation of linkage tables

During the compilation of a program, which contains
references to functions or variables of shared libraries, the
compiler and static linker generate a linkage table. The
linkage table contains symbols, i.e., functions and variables,
and for each symbol a pointer. The linkage table is placed in
the program’s executable file. When the program is loaded,
the dynamic linker sets each pointer to the exact location in
memory where the respective symbol is defined.
The interposition is obtained by accessing thelinkage table
and modifying the pointer corresponding to the function
we want to redirect. Although there may be other different
techniques for doing this, a general approach consists of

3



loading the interposition library by using interfaces provided
by the operating system, locating the memory address of the
interposing function defined by the interposition library and
setting the pointer in question to point to this memory address.

3. DynInst

As we wrote in Section 4, DynInst can replace existing
instructions of the target process and load new libraries in
its address space. Interposition is achieved by loading the
interposition library into the address space of the target
process and changing the call to a function of the Kerberos
shared libraries to be a call to a function of the interposition
library, which in turn may call the function in question of the
Kerberos shared libraries, thus put itself in the middle.

5.2 Intercepting Function Calls

Once interposition has been achieved using one of the techniques
illustrated above, the proper code must be provided for the attack to
succeed Figure 2. In our case, withkinit andkpasswd, the goal
is to access another user’s tickets and obtain the new password of
the target user, respectively. We developed the interposition library
aimed at hijacking the destination file where a user stores the tick-
ets he/she obtains with thekinit client application1. The stolen
tickets, once stored in the destination indicated by the attacker, are
accessible to the attacker. Without loss of generality, we performed
the attack on a Linux system with two users, namelyuserwith uid
503 andmalicious-userwith uid 502. Both users have accounts
on a remote Kerberos server as principalsuserandmalicious-user,
respectively, and they can both connect to a remotetelnet server
once authenticated by Kerberos.

Before having the viral code interpose his/her malicious in-
terposition library betweenkinit and Kerberos shared libraries,
malicious-useruses an ad hoc program that generates the default
cache file where tickets can be stored and changes its permissions
so that any other user can read and write such a file. Then he ini-
tiates the infection process. The viral code activates interposition
and waits for a victim,user, to request a ticket withkinit in or-
der to access thetelnet service. The hijacking process occurs
whenkinit calls the functionkrb5 cc resolve. In that moment
the malicious interposition library intercepts the function call and
replaces the argument containing the name of the file where the
ticket will be stored with the name of the default cache file gen-
erated before. The real functionkrb5 cc resolve from the Ker-
beros shared libraries is then called with the modified arguments.
The malicious interposition library also intercepts the call to the
krb5 cc initialize function, to prevent it from detecting the
anomaly of the destination file that does not belong touser. In this
case, the realkrb5 cc initialize function from the Kerberos
shared libraries is not called and the value 0, i.e. no error, is simply

1The code of the interposition library is available for download at the URL:
http://cert-it.dico.unimi.it/∼jlr/interpose-lib.c after contacting
the authors.

returned.kinit then proceeds to store the ticket in the previously
generated default cache file. This waymalicious-userhijacked the
destination where the ticket ofuserwas to be stored.

A similar attack was performed againstkpasswd. In this case,
the malicious-user’s viral code activates interposition and waits
for user to change the password he/she shares with the Kerberos
server. Whenuserexecuteskpasswd to change the password, the
malicious interposition library intercepts the call to the function
krb5 change password. Since one of the arguments isuser’s
new password, the malicious library records such a value and then
calls the realkrb5 change password function from the Kerberos
shared libraries.

6 Related Work

In this section we review previous work regarding call tracing and
its use as an attack strategy in a variety of environments.

6.1 Call Tracing for IDS Evasion

Interception of function calls and modification of their arguments
has been used as a technique to evade host-based Intrusion Detec-
tion Systems (IDS) [7]. A typical host-based IDS examines the
system calls executed by each application. How the intrusion is
detected from the analysis of the function call arguments or its oc-
currence or other parameters depends upon the specific IDS. In [8]
the IDS tries to learn the normal behavior of applications by collect-
ing system call traces during time intervals when the system is not
under attack. Then the IDS extracts all possible sub traces contain-
ing six consecutive system calls and inserts them into a data base.
These steps are referred to as thelearning phase. A sub trace that
does not match any of the entries of the database is tagged as abnor-
mal. In themonitoring phase, when the IDS monitors applications
in order to detect intrusions, the IDS collects traces of the function
calls executed by each application and measures the degree of ab-
normality of each individual call trace as the number of abnormal
sub traces it contains.

In order to detect an intrusion, the IDS can, as well, use way-
points and impossible paths [6]. Waypoints are kernel-supported
trustworthy markers on the execution path of an application that
must be followed by that application when making system calls.
An impossible path is a sequence of system calls that an applica-
tion will never execute.

The evasion technique consists of replacing the arguments of sys-
tem calls that are part of the normal behavior of an application with
values that represent operations the attacker wants to perform. This
way the legitimate system call executed by the application will exe-
cute on behalf of the attacker. For instance, if the attacker wants to
write to the shadow file and the functionopen("/lib/libc.so",
O RDONLY) belongs to the normal execution of an application, in
the exact moment the application calls it the attacker replaces the
argument with("/etc/shadow", O RDWR) [7]. Considering the
way a typical IDS works, this attack will not be detected.

4



Figure 2: Interposition libraries based attack

6.2 Call Tracing in Attacks to ODBC

An example of a protocol whose implementation is vulnerable to
call tracing attacks is the Open Data Base Connectivity (ODBC)
protocol [19]. In a typical interaction between a client and a data-
base server, the ODBC Manager of the client calls the client’s
ODBC Drive, which in turn communicates with the database server.
In early standard implementations of this protocol, by locally inter-
cepting the function calls from the ODBC Manager to the ODBC
Drive, it was possible to capture the user’s id and password. As
a countermeasure to call tracing, various database technologies
avoided passing sensitive information through an ODBC connec-
tion by creating a separate secure channel, e.g., for sending authen-
tication credentials. Some proprietary implementations of ODBC
added encryption functionalities to ODBC Manager and ODBC
Drive in order to solve the problem [4].

6.3 Call Tracing in Attacks to Condor

Condor is a specialized workload management system for compute-
intensive jobs [11]. It allows users to schedule and run their appli-
cation programs on remote idle hosts in a widely-distributed envi-
ronment. Condor users are not assigned an account on the remote
host. In the remote hosts their applications run with an anonymous
and restricteduid, such asnobody on a Linux system. When a user
submits a job to Condor from itsSubmitting Machine(SM), Con-
dor places it into a queue and according to the adopted scheduling
policy it decides when and where, i.e., on what host, referred to as
Execution Machine(EM), to run it. After allocating the application
program to a remote EM, Condor links it with the Condor RPC li-
brary, which forwards all the system calls issued by the application
to the SM via remote procedure calls. That is, systems calls per-
formed by an application in the EM actually execute on the SM and
the values they return are sent back to the EM.

In such a scenario, an attack can be performed as follows [5].
The attacker submits a malicious job to Condor from his/her SM.

Condor schedules the malicious job on an idle EM of choice. Once
it starts executing on the remote host withuid nobody, the mali-
cious job spawns a new process, which will remain in the system
even after its parent completes or is migrated by Condor to another
EM. When a new job is allocated on the compromised machine, the
malicious resident process can intercept the system calls performed
by the new job and manipulate them in order to perform operations
on the SM from where the new job had been submitted.

7 Observations and Conclusions

The attacks we discussed in this paper may be performed directly,
i.e., not through viral code but executing attacking code with their
user id. This is possible if the level of privilege of the attacker
is high enough to be able to affect other users’ execution envi-
ronments or attach to other users’ processes and operate on them.
Such a category of users can, of course, apply other strong attacks
like backdooring binaries [17], injecting a redirected library call
into an executable [18] or using a compiler to statically inject calls
to a tracing library into an application program. However, when
integrity checking is in place and high privileged malicious users
cannot control it, they could still apply the strategies discussed in
this paper in order to attack a Kerberos user without modifying the
system software. The high privileged users category includes priv-
ileged users specified in the file/etc/sudoers in such a way that
they are allowed either explicitly, i.e., by uid or implicitly, i.e., by
gid, to create processes that can attach to processes of other users
or set environment variables on their behalf. Users who are granted
a chroot virtual file system and areptrace-capable are also part
of the category.

Another scenario where the attacks discussed in this paper can
take place is represented by users with different usernames and
passwords but the same user id,uid [3]. Under Linux, theuseradd
command has an option,-o, that allows the system administrator to
create accounts with the same uid. In this scenario each of the users

5



with the same uid can spy the others by tracing their processes.
Unless the attacks described in this paper are performed in a di-

rect way by the category of high privileged users defined above,
they require the execution of code on behalf of the target user. This
is why we adopted the virus strategy, so that the malicious user can
act locally as a simple user. Such a local user has better chances
to infect the local system than an outside attacker. However, being
a local user is a weak requirement, as an attacker could perform
the attacks we described from any host on the network, as long as
he/she succeeds in infecting the target host with the virus and even-
tually a Kerberos user authenticates in a Kerberos realm.

The work presented in this paper focused on demonstrating the
problematic nature of tracing the function calls in a Kerberos en-
vironment. Further study will concentrate on building algorithms
that aim at detecting function call tracing attacks, and on defin-
ing mechanisms that defeat local interception, at least with regard
to attacks against the confidentiality of the Kerberos user. Other
fields of investigation include general integrity checking algorithms
for detecting infection activities inside the system, and lightweight
cryptographic separation techniques that could enable a process to
conceal its data and computation in such a way that it is unintelli-
gible to outside processes.

References

[1] Kohl J., Neuman B. C., “The Kerberos Network Authenti-
cation Service (V5),” RFC 1510, September 1993.

[2] Pfleeger C.P., “Security In Computing,” Prentice Hall,
1997.

[3] Garfinkel S., Spafford G., “Practical Unix & Internet Secu-
rity,” 2nd edition, O’Reilly, April 1996.

[4] Fugini M., Maio F., Plebani P., “Sicurezza dei sistemi in-
formatici”, Apogeo, March 2001.

[5] Miller B.P., Christodorescu M., Iverson R., Kosar T., Mir-
gordskii A., and Popovici F., “Playing inside the black box:
Using dynamic instrumentation to create security holes,”
Parallel Processing Letters, June/September 2001.

[6] Xu H., Du W., and Chapin S.J., “Context Sensitive Anom-
aly Monitoring of Process Control Flow to Detect Mimicry
Attacks and Impossible Paths,” Proc. of the Seventh Inter-
national Symposium on Recent Advances in Intrusion De-
tection, RAID 2004, September 2004.

[7] Wagner D. and Soto P., “Mimicry Attacks on Host-based
Intrusion Detection Systems,” Proc. of the 9th ACM Con-
ference on Computer and Communications Security, 2002.

[8] Hofmeyr S., Forrest S., Somayaji A., “Intrusion Detection
Using Sequences of System Calls,” Journal of Computer
Security, 1998.

[9] Curry T.W., “Profiling and Tracing Dynamic Library Us-
age Via Interposition,” Proc. of the USENIX 1994 Summer
Conference, 1994.

[10] Gonzalez M., Serra A., Martorell X., Oliver J., Ayguade
E., Labarta J., Navarro N., “Applying interposition tech-
niques for performance analysis of OpenMP parallel appli-
cations,” Proc. 14th International Parallel and Distributed
Processing Symposium, IPDPS 2000, IEEE Computer So-
ciety, 2000.

[11] The Condor Team, “Condor High Throughput Comput-
ing”, http://www.cs.wisc.edu/condor/.

[12] Serra A., Navarro N. and Cortes T., “DITools: Application-
level Support for Dynamic Extension and Flexible Compo-
sition,” Proc. of the USENIX Technical Conference, June
2000.

[13] Torres M., Liu Z., Florez G., Vaughn R. and Bridges S.,
“Attacking a High Performance Computer Cluster,” Proc.
of the 15th Annual Canadian Information Technology Se-
curity Symposium, May 2003.

[14] ParaDyn, “An Application Program Inter-
face (API) for Runtime Code Generation,”
http://www.paradyn.org/html/manuals.html.

[15] M.I.T., “Kerberos: the network authentication protocol,”
http://web.mit.edu/kerberos/www/ .

[16] Neumann B. C., Ts’o, “Kerberos: An Authentication Ser-
vice for Computer Networks,” IEEE Communications,
32(9), September 1994.

[17] Klog, “Backdooring Binary Objects,” Phrack Magazine
Vol 56, 2000. http://www.phrack.org/.

[18] Silvio Cesare, “Shared Library Call Redirection Via
ELF PLT Infection,” Phrack Magazine Vol 56, 2000.
http://www.phrack.org/.

[19] ODBC, http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/odbc/htm/odbcpart 1.asp

6


