

Security Management – 5000 events/sec, half an engineer, and automation discouraged

or: Challenges in Intrusion Detection

Michael Behringer <mbehring@cisco.com>
Distinguished Engineer
July 2006

RFC 1925: The Twelve Networking Truths

"With sufficient thrust, pigs fly just fine."

Michael's corollary: "With sufficient effort, you can make your IDS work."

The Threats Have Evolved: Increasing Speed and Damage

Worms: Vanishing Patch to Outbreak Window

The Problem Space

- Signature management
- Many different IDS approaches
- False positives
- Day-0 recognition
- Scale of alerts
- Complexity of decision
- Network scale
- Visibility (encryption, location, ...)

•

Manageability

Intelligence

Performance

The Goal

4:45PM SARAH VISITS DAD'S OFFICE 5:05PM SARAH DOWNLOADS FUNNYBUNNY.EXE 5:06PM NETWORK KILLS FUNNYBUNNY5:14PM DAD TAKES SARAH TO KARATE PRACTICE

Sometimes threats don't look like threats. They look like your mobile workers, your sales department or your CPO's daughter. Even the innocent act of downloading a file—one that looks like any other, but is in fact corrupt—can create a postly security breach that can take your business off-line for days. So how do you defend against threats that take the shape of productive employees? A network with integrated security can detect and contain potential threats before they become actual ones. Whether they're worms, hackers or even well-meaning humans. Security that's about prevention. Not reaction. To learn more about how Cisco can help plan, design and implement your network security, wait cisco com/securitynow. SELF-DEFENDING NETWORKS PROTECT AGAINST HUMAN NATURE.

- Manageability → Automation
- Intelligence → Correctness
- Performance → Completeness

IDS: Approaches

- Signature based (define "bad")
 - Needs to know attack up front; hard to manage
- Behaviour based
 - Complex to manage; up front config
- Honeypots
 - Good for worms and scanning, not much else
- Statistical Analysis
 - Only detects big changes

- + quite precise
- complex
- slow

- + performant
- not precise enough

Two Generic Approaches

1. Full packet / session inspection

Precision!!!

But: Mostly signature based, see next section

But: Performance required, see later

2. Header inspection: Flow based, honeypot

Statistics based → heuristics are simple

Can catch day-zero, quite efficient

But: Not precise enough!!!

Manageability

Manageability Challenges: Overview

Different device types

Router, firewall, IDS, HIDS, DDoS protection, honeypot, ...

- → Different IDS capabilities
- → Different management
- → Different signatures
- → Different event types
- Scaling issues:

Updating N devices
Receiving lots of events
Correlation

Number of Events, Network Wide

Model		Performance Events/Sec*	Performance NetFlows/Sec	
		50	7,500	
		500	15,000 second	
Marketing Stuff irrelevant here	10	nos of events	s per second	
Markeevant	10	,000s of flow	per second sper second 75,000	
		5000	150,000	
		10,000	300,000	

Intelligence

Process for Accurate Threat Mitigation: Rating Alarms for Threat Context

Process for Accurate Threat Mitigation: Integrated Event Correlation

On-Box Correlation Allows
Adaptation to New Threats in
Real-Time without User Intervention

- Links lower risk
 events into a high risk
 meta-event, triggering
 prevention actions
- Models attack behavior by correlating:

Event type

Time span

Example for Increasing Complexity: Obfuscation

IDS looking for "..\" to detect attacks like:

...\WINNT\SYSTEM32\CMD.EXE

IDS needs to look for "\":

- \ or /
- %5c (%5C is hexa code for \)
- %255c (%25 is hexa code for %)
- %%35c (%35 is hexa code for 5)
- %%35%63 (%63 is hexa code for c)
- %c0%af (using Unicode)

•

IDS must parse! → Complex!

By the way...

How do you upgrade from IDS to IPS?

Intrusion Detection

Intrusion Prevention

s/D/P/

Performance

Performance: Goal

Inspect:

Each packet header

Each packet payload

At full line rate

Network Speed Development:

Checks:

against 1000s signatures
do virtual reassembly
be stateful (track connections)
application awareness

Complexity Development:

... so: "just build faster chips!"

Silicon Industry Challenge

Silicon Industry Challenge

Silicon Density – Touching the Limits

Intel Pentium 4

Silicon Density and Moore's Law

Gate Oxide Layer
For 90nm process,
this is approx 1.2nm
= 5 Atoms!

ASIC Feature Size Evolution

Feature size (drawn) (µm)	Qual. Year	Usable Gates (M)	DRAM density (Mbit/mm²)	Gate delay (ps)	Power (nW/MHz/gate)	Core Voltage	Metal layers
0.25	1999	10	-	?	50	2.5/1.8V	5/AI
0.18 (0.15)	2000	24	0.81	23	20	1.8V	6/Cu
0.13 (0.10)	2002	40	1.5	20/15	9	1.2V/1.5V	7/Cu
0.09	2004	72	2.9	11/7	6	1.0V/1.2V	8/Cu
0.065	2005	120	?	6/8	4.5/5.0	1.0V/1.2V	9/Cu

Source: IBM SA-12E, SA-27E, Cu-11, Cu-08, Cu-65

Biggest Scaling Issue: Power!

The constraints of 'standard' cooling and packaging of networking systems are very significant...

Device	Power		
'486	< 5W		
Pentium	10W		
Pentium II (400MHz)	28W		
Pentium III (1.33GHz, 0.13um)	34W		
Pentium IV (3.2GHz, 0.09um)	103W		
Pentium "Extreme Edition 840" 3.2GHz, HyperThreading	180W		

Source: Intel datasheets

CRS-1 System Mechanical Line Card Chassis Overview—Full Rack Unit

Slots (Midplane design):

Front
16 PLIM slots
2 RP slots + 2 Fan Controllers
Back
16 LC Slots

Dimensions:

23.6" W x 41*" D x 84" H

Power: ~12 KW (AC or DC)

8 Fabric cards

Weight: ~ 707kg

Heat Dis.: 33000 BTUs (AC)

^{*}For standalone Chassis Depth = 35" (no fabric chassis cable management)

But: Efficiency is Still Increasing!!

Resources for a 1 Terabit Router

Scaling Performance

- Not just "faster, faster, faster"
- Need new approaches for h/w and s/w
- Distribute processing:

Host – switch – edge router – core router

Each device what it knows best

But: Challenge in Management!

So What Now?

So, Host IDS is "the" solution, right?

- Performance distributed
- Encryption not an issue
- Stateful
- Application awareness

Can you trust the host?

- may be subverted
- User might switch HIDS off / bypass it
- Service Provider Case: no control over host!

Sounds ideal, doesn't it?!?

Ways Forward for Intrusion Detection

Distribute processing

Host, router, access switch, honeypot, ...

- More "intelligence"
 Innovative, simple, approaches
- Evolve management
 Distributed, "intelligent"
- Combine approaches

Signature based, flow based, behaviour based, ...

... more research needed!

Summary

Today:

Need expert to operate IDS!

Significant effort (opex) required to make IDS useful

Work needed to:

Make network wide IDS manageable

Increase intelligence → low false positive, negative

Tomorrow:

Self-updating

Self-correlating

Self-defending

Q and A

