
Detecting Self-Mutating Malware Using
Control-Flow Graph Matching

Danilo Bruschi Lorenzo Martignoni Mattia Monga

Dipartimento di Informatica e Comunicazione
Università degli Studi di Milano

{bruschi,martign,monga}@dico.unimi.it

Conference on Detection of Intrusions and
Malware & Vulnerability Assessment – 2006

Outline

Code Obfuscation and Self-mutation
Strategies adopted to achieve self-mutation and code insertion
Challenges for the detection

Unveiling malicious code
Code normalization
Code comparison

Prototype implementation

Experimental results

Summary and future works

D. Bruschi, L. Martignoni, M. Monga Detecting Self-Mutating Malware Using Control-Flow Graph Matching DIMVA2006 2

Code obfuscation and self-mutation

I Code obfuscation is a semantic-preserving program transformation
that can be used to make a program harder to understand

I Self-mutation is a particular form of code obfuscation, which is
performed automatically by the code on itself

I Self-mutation is adopted by malicious code to defeat detectors

I Self-mutation is applied during malicious code replication to generate
completely new different instances

D. Bruschi, L. Martignoni, M. Monga Detecting Self-Mutating Malware Using Control-Flow Graph Matching DIMVA2006 3

Self-mutation

Common transformations adopted to achieve self-mutation:
I Substitution of instructions

I Permutation of instructions

I Garbage insertion

I Substitution of variables

I Control flow alteration

Signature matching becomes useless

D. Bruschi, L. Martignoni, M. Monga Detecting Self-Mutating Malware Using Control-Flow Graph Matching DIMVA2006 4

Self-mutation

Common transformations adopted to achieve self-mutation:
I Substitution of instructions

I Permutation of instructions

I Garbage insertion

I Substitution of variables

I Control flow alteration

Signature matching becomes useless

D. Bruschi, L. Martignoni, M. Monga Detecting Self-Mutating Malware Using Control-Flow Graph Matching DIMVA2006 4

Code insertion

Common techniques adopted for malicious code insertion:
I Cavity insertion

I Jump tables manipulation

I Data segment expansion

The malicious code is seamless integrated into the host code

D. Bruschi, L. Martignoni, M. Monga Detecting Self-Mutating Malware Using Control-Flow Graph Matching DIMVA2006 5

Code insertion

Common techniques adopted for malicious code insertion:
I Cavity insertion

I Jump tables manipulation

I Data segment expansion

The malicious code is seamless integrated into the host code

D. Bruschi, L. Martignoni, M. Monga Detecting Self-Mutating Malware Using Control-Flow Graph Matching DIMVA2006 5

Challenges for the detection

Conventional detection techniques are likely to fail:
I Pattern matching fails since fragmentation and mutation make hard to

find signature patterns

I Emulation would require a complete tracing of analyzed programs as
the entry point of the guest is not known; moreover every execution
should be traced until the malicious payload is not executed

I Heuristics based on ad-hoc predictable and observable alterations of
executables become useless when insertion is performed producing
almost no alteration of any of the static properties of the original
binary

Theoretical studies (Chess & White) demonstrated that perfect detection
of a self-mutating malware is an undecidable problem

D. Bruschi, L. Martignoni, M. Monga Detecting Self-Mutating Malware Using Control-Flow Graph Matching DIMVA2006 6

Challenges for the detection

Conventional detection techniques are likely to fail:
I Pattern matching fails since fragmentation and mutation make hard to

find signature patterns

I Emulation would require a complete tracing of analyzed programs as
the entry point of the guest is not known; moreover every execution
should be traced until the malicious payload is not executed

I Heuristics based on ad-hoc predictable and observable alterations of
executables become useless when insertion is performed producing
almost no alteration of any of the static properties of the original
binary

Theoretical studies (Chess & White) demonstrated that perfect detection
of a self-mutating malware is an undecidable problem

D. Bruschi, L. Martignoni, M. Monga Detecting Self-Mutating Malware Using Control-Flow Graph Matching DIMVA2006 6

Devised strategy

Code interpretation and normalization
I Given a piece of code P which represents (or

contains) an instance of a self-mutating
malware we automatically revert all the
mutations performed on it

I P is consequently reduced into a form, PN ,
which is pretty close to its archetype M and
which can be recognized more easily

Code comparison
I Detection is performed by looking for known

abstract patterns into the transformed
program PN

D. Bruschi, L. Martignoni, M. Monga Detecting Self-Mutating Malware Using Control-Flow Graph Matching DIMVA2006 7

Code normalization

Code normalization
A program is transformed into a canonical form which is simpler in term
of structure or syntax while preserving the original semantic and that is
more suitable for comparison

I Analysis of the transformations adopted to implement self-mutation
and experimental observations highlighted some weakness:
I Transformations led to the generation of useless computations
I Most transformations are invertible

I Different instances of the same malware can be viewed as
under-optimized version of the archetype; the archetype is
consequently the normal form of the malicious code

I Code normalization can be performed adopting some of the well known
techniques used by compiler to produce compact and efficient code

D. Bruschi, L. Martignoni, M. Monga Detecting Self-Mutating Malware Using Control-Flow Graph Matching DIMVA2006 8

Code normalization
Some details

I Executable code is disassembled and translated into an intermediate
form to explicit the semantic of each machine instruction

I Control-flow analysis and data-flow analysis are performed on the code
to collect information that will be used by the next step

I Code transformations aim at:
I Identify all the instructions that do not contribute to the computation

(dead and unreachable code elimination)
I Rewrite and simplify algebraic expressions in order to statically evaluate

most of their sub-expressions (algebraic simplification)
I Propagate values computed by intermediate instructions to the

appropriate use sites (expressions propagation)
I Analyze and try to evaluate control-flow transition conditions to identify

tautologies and to rearrange the control to reduce the number of flow
transitions (control-flow normalization)

I Analyze indirect control flow transitions to discover the smallest set of
valid targets and the paths originating (indirections resolution)

D. Bruschi, L. Martignoni, M. Monga Detecting Self-Mutating Malware Using Control-Flow Graph Matching DIMVA2006 9

Code comparison

Given the normalized program we need to answer the question:

“is the program PN hosting the malware M?”

I We cannot expect to find a perfect matching of M in PN even if most
of the transformations have been reverted

I The code comparator must be able to cope with some impurities left
by normalization (we observed that these impurities are always local to
basic blocks)

I The normalized control-flow of the malware is constant

D. Bruschi, L. Martignoni, M. Monga Detecting Self-Mutating Malware Using Control-Flow Graph Matching DIMVA2006 10

Code comparison
Some details

I PN is represented through its
interprocedural-control flow graph (ICFG)
and M through its control-flow graph

I The malicious code detection can be
formulated as a subgraph isomorphism
decision problem: “given two graphs G1 and
G2, is G1 isomorphic to a subgraph of G2?”
(G1 is M and G2 is PN)

I The graphs are augmented with labels to
achieve the necessary trade-off between
precision and abstraction (to handle possible
impurities)

I Instructions and flow transitions are
partitioned into classes; labels describe the
set of classes in which instructions of a basic
block can be grouped

M

PN

Instruction classes
Integer arithmetic
Float arithmetic
Logic
Comparison
Function call
. . .

D. Bruschi, L. Martignoni, M. Monga Detecting Self-Mutating Malware Using Control-Flow Graph Matching DIMVA2006 11

Code comparison
Some details

I PN is represented through its
interprocedural-control flow graph (ICFG)
and M through its control-flow graph

I The malicious code detection can be
formulated as a subgraph isomorphism
decision problem: “given two graphs G1 and
G2, is G1 isomorphic to a subgraph of G2?”
(G1 is M and G2 is PN)

I The graphs are augmented with labels to
achieve the necessary trade-off between
precision and abstraction (to handle possible
impurities)

I Instructions and flow transitions are
partitioned into classes; labels describe the
set of classes in which instructions of a basic
block can be grouped

M

PN

Instruction classes
Integer arithmetic
Float arithmetic
Logic
Comparison
Function call
. . .

D. Bruschi, L. Martignoni, M. Monga Detecting Self-Mutating Malware Using Control-Flow Graph Matching DIMVA2006 11

Code comparison
Some details

I PN is represented through its
interprocedural-control flow graph (ICFG)
and M through its control-flow graph

I The malicious code detection can be
formulated as a subgraph isomorphism
decision problem: “given two graphs G1 and
G2, is G1 isomorphic to a subgraph of G2?”
(G1 is M and G2 is PN)

I The graphs are augmented with labels to
achieve the necessary trade-off between
precision and abstraction (to handle possible
impurities)

I Instructions and flow transitions are
partitioned into classes; labels describe the
set of classes in which instructions of a basic
block can be grouped

M

PN

Instruction classes
Integer arithmetic
Float arithmetic
Logic
Comparison
Function call
. . .

D. Bruschi, L. Martignoni, M. Monga Detecting Self-Mutating Malware Using Control-Flow Graph Matching DIMVA2006 11

Code comparison
Some details

I PN is represented through its
interprocedural-control flow graph (ICFG)
and M through its control-flow graph

I The malicious code detection can be
formulated as a subgraph isomorphism
decision problem: “given two graphs G1 and
G2, is G1 isomorphic to a subgraph of G2?”
(G1 is M and G2 is PN)

I The graphs are augmented with labels to
achieve the necessary trade-off between
precision and abstraction (to handle possible
impurities)

I Instructions and flow transitions are
partitioned into classes; labels describe the
set of classes in which instructions of a basic
block can be grouped

M

PN

Instruction classes
Integer arithmetic
Float arithmetic
Logic
Comparison
Function call
. . .

D. Bruschi, L. Martignoni, M. Monga Detecting Self-Mutating Malware Using Control-Flow Graph Matching DIMVA2006 11

Prototype implementation

I The code normalizer is built on top of Boomerang, an open-source
decompiler:
I Translate machine code into the intermediate form through a recursive

disassembler
I Performs data-flow analysis on the intermediate form
I Performs the normalization steps previously described (some of the

transformation have been extended to suit our needs)
I Able to solve know patterns of indirection

I The prototype receives an executable files and emits its normalized
ICFGPN

I The ICFGPN
of the normalized program and the CFGM of the searched

malware are then fed to the VFlib2 library which is used to identify
possible matches

I In case of match the comparison routine returns the set of ICFGPN

nodes that match the ones of the CFGM

D. Bruschi, L. Martignoni, M. Monga Detecting Self-Mutating Malware Using Control-Flow Graph Matching DIMVA2006 12

Experimental results

Two independent tests were performed:

1. Evaluation of code normalization effectiveness:
I Several instances of the same self-mutating malicious code (the virus

MetaPHOR) were collected and normalized
I The normalized control-flow graphs were all isomorphic, they were not

before

2. Evaluation of code comparison precision:
I Different executables were collected and their ICFGs were built
I Each procedure CFG was used to simulate malicious code and searched

inside the ICFGs
I The results of the subgraph isomorphism detection procedure were

compared with the results obtained through code fingerprinting
I A random set of alleged false-positives and false-negatives were selected

and inspected by hand

D. Bruschi, L. Martignoni, M. Monga Detecting Self-Mutating Malware Using Control-Flow Graph Matching DIMVA2006 13

Experimental results
Some numbers

Type #
Executables 572
Functions (# nodes > 5) 25145
Unique functions (# nodes > 5) 15429

Positive results # %
Equivalent code 35 70
Equivalent code
(negligible differences) 9 18
Different code
(small number of nodes) 3 6
Unknown 1 2
Bug 2 4

Negative results # %
Different code 50 100

nodes Average load Worst detection
(∼) time (secs.) time (secs.)
100 0.00 0.00
1000 0.09 0.00
5000 1.40 0.05
10000 5.15 0.14
15000 11.50 0.32
20000 28.38 0.72
25000 40.07 0.95
50000 215.10 5.85

D. Bruschi, L. Martignoni, M. Monga Detecting Self-Mutating Malware Using Control-Flow Graph Matching DIMVA2006 14

Summary

I We proposed a general strategy, based on static analysis, that can be
used to pragmatically fight malicious codes that adopt self-mutation
to circumvent detectors

I We developed a prototype tool and used it to show that a malware
that suffers a cycle of mutations in most cases can be brought back to
a canonical shape that is shared among all instances

I We showed that augmented control-flow graphs are well suited to
describe a peculiar piece of code and that reliable code identification
can be formulated as a subgraph isomorphism decision problem

I Although the subgraph isomorphism is a NP-complete problem, our
particular instance seems to be tractable (the graphs we are dealing
with are very sparse)

D. Bruschi, L. Martignoni, M. Monga Detecting Self-Mutating Malware Using Control-Flow Graph Matching DIMVA2006 15

Future works

I Extend our prototype to perform normalization on real world
executables and increase the effectiveness of normalization by
extending the quality of the analysis performed

I Evaluate algorithms for partial subgraph isomorphism matching and
the benefits they could give in our context

I Perform more exhaustive experiments using new malicious code

I Investigate attacks and countermeasures to defeat static analysis

D. Bruschi, L. Martignoni, M. Monga Detecting Self-Mutating Malware Using Control-Flow Graph Matching DIMVA2006 16

Thank you!

D. Bruschi, L. Martignoni, M. Monga Detecting Self-Mutating Malware Using Control-Flow Graph Matching DIMVA2006 17

	Code Obfuscation and Self-mutation
	Strategies adopted to achieve self-mutation and code insertion
	Challenges for the detection

	Unveiling malicious code
	Code normalization
	Code comparison

	Prototype implementation
	Experimental results
	Summary and future works

